On The (k,t)-Metric Dimension Of Graphs
Abstract Let $(X,d)$ be a metric space. A set $S\subseteq X$ is said to be a $k$-metric generator for $X$ if and only if for any pair of different points $u,v\in X$, there exist at least $k$ points $w_1,w_2, \ldots w_k\in S$ such that $d(u,w_i)\ne d(v,w_i),\; \textrm{for all}\; i\in \{1, \ldots k\}....
Gespeichert in:
Veröffentlicht in: | Computer journal 2021-05, Vol.64 (5), p.707-720 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Let $(X,d)$ be a metric space. A set $S\subseteq X$ is said to be a $k$-metric generator for $X$ if and only if for any pair of different points $u,v\in X$, there exist at least $k$ points $w_1,w_2, \ldots w_k\in S$ such that $d(u,w_i)\ne d(v,w_i),\; \textrm{for all}\; i\in \{1, \ldots k\}.$ Let $\mathcal{R}_k(X)$ be the set of metric generators for $X$. The $k$-metric dimension $\dim _k(X)$ of $(X,d)$ is defined as $$\begin{equation*}\dim_k(X)=\inf\{|S|:\, S\in \mathcal{R}_k(X)\}.\end{equation*}$$Here, we discuss the $k$-metric dimension of $(V,d_t)$, where $V$ is the set of vertices of a simple graph $G$ and the metric $d_t:V\times V\rightarrow \mathbb{N}\cup \{0\}$ is defined by $d_t(x,y)=\min \{d(x,y),t\}$ from the geodesic distance $d$ in $G$ and a positive integer $t$. The case $t\ge D(G)$, where $D(G)$ denotes the diameter of $G$, corresponds to the original theory of $k$-metric dimension, and the case $t=2$ corresponds to the theory of $k$-adjacency dimension. Furthermore, this approach allows us to extend the theory of $k$-metric dimension to the general case of non-necessarily connected graphs. Finally, we analyse the computational complexity of determining the $k$-metric dimension of $(V,d_t)$ for the metric $d_t$. |
---|---|
ISSN: | 0010-4620 1460-2067 |
DOI: | 10.1093/comjnl/bxaa009 |