A correlation-shrinkage prior for Bayesian prediction of the two-dimensional Wishart model

A Bayesian prediction problem for the two-dimensional Wishart model is investigated within the framework of decision theory. The loss function is the Kullback–Leibler divergence. We construct a scale-invariant and permutation-invariant prior distribution that shrinks the correlation coefficient. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrika 2022-11, Vol.109 (4), p.1173-1180
Hauptverfasser: Sei, T, Komaki, F
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A Bayesian prediction problem for the two-dimensional Wishart model is investigated within the framework of decision theory. The loss function is the Kullback–Leibler divergence. We construct a scale-invariant and permutation-invariant prior distribution that shrinks the correlation coefficient. The prior is the geometric mean of the right invariant prior with respect to permutation of the indices, and is characterized by a uniform distribution for Fisher’s $z$-transformation of the correlation coefficient. The Bayesian predictive density based on the prior is shown to be minimax.
ISSN:0006-3444
1464-3510
DOI:10.1093/biomet/asac006