A correlation-shrinkage prior for Bayesian prediction of the two-dimensional Wishart model
A Bayesian prediction problem for the two-dimensional Wishart model is investigated within the framework of decision theory. The loss function is the Kullback–Leibler divergence. We construct a scale-invariant and permutation-invariant prior distribution that shrinks the correlation coefficient. The...
Gespeichert in:
Veröffentlicht in: | Biometrika 2022-11, Vol.109 (4), p.1173-1180 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A Bayesian prediction problem for the two-dimensional Wishart model is investigated within the framework of decision theory. The loss function is the Kullback–Leibler divergence. We construct a scale-invariant and permutation-invariant prior distribution that shrinks the correlation coefficient. The prior is the geometric mean of the right invariant prior with respect to permutation of the indices, and is characterized by a uniform distribution for Fisher’s $z$-transformation of the correlation coefficient. The Bayesian predictive density based on the prior is shown to be minimax. |
---|---|
ISSN: | 0006-3444 1464-3510 |
DOI: | 10.1093/biomet/asac006 |