Bagging cross-validated bandwidths with application to big data

Hall & Robinson (2009) proposed and analysed the use of bagged cross-validation to choose the bandwidth of a kernel density estimator. They established that bagging greatly reduces the noise inherent in ordinary cross-validation, and hence leads to a more efficient bandwidth selector. The asympt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrika 2021-12, Vol.108 (4), p.981-988
Hauptverfasser: Barreiro-Ures, D, Cao, R, Francisco-Fernández, M, Hart, J D
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hall & Robinson (2009) proposed and analysed the use of bagged cross-validation to choose the bandwidth of a kernel density estimator. They established that bagging greatly reduces the noise inherent in ordinary cross-validation, and hence leads to a more efficient bandwidth selector. The asymptotic theory of Hall & Robinson (2009) assumes that $N$, the number of bagged subsamples, is $\infty$. We expand upon their theoretical results by allowing $N$ to be finite, as it is in practice. Our results indicate an important difference in the rate of convergence of the bagged cross-validation bandwidth for the cases $N=\infty$ and $N
ISSN:0006-3444
1464-3510
DOI:10.1093/biomet/asaa092