Bagging cross-validated bandwidths with application to big data
Hall & Robinson (2009) proposed and analysed the use of bagged cross-validation to choose the bandwidth of a kernel density estimator. They established that bagging greatly reduces the noise inherent in ordinary cross-validation, and hence leads to a more efficient bandwidth selector. The asympt...
Gespeichert in:
Veröffentlicht in: | Biometrika 2021-12, Vol.108 (4), p.981-988 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hall & Robinson (2009) proposed and analysed the use of bagged cross-validation to choose the bandwidth of a kernel density estimator. They established that bagging greatly reduces the noise inherent in ordinary cross-validation, and hence leads to a more efficient bandwidth selector. The asymptotic theory of Hall & Robinson (2009) assumes that $N$, the number of bagged subsamples, is $\infty$. We expand upon their theoretical results by allowing $N$ to be finite, as it is in practice. Our results indicate an important difference in the rate of convergence of the bagged cross-validation bandwidth for the cases $N=\infty$ and $N |
---|---|
ISSN: | 0006-3444 1464-3510 |
DOI: | 10.1093/biomet/asaa092 |