A type ₁ factor with the smallest outer automorphism group
The canonical modular homomorphism provides an embedding of R \mathbb {R} into the outer automorphism group O u t ( M ) Out(M) of any type I I I 1 \mathrm {III}_{1} factor M M . We provide an explicit construction of a full factor of type I I I 1 \mathrm {III}_{1} with separable predual such that th...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2024-10 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The canonical modular homomorphism provides an embedding of R \mathbb {R} into the outer automorphism group O u t ( M ) Out(M) of any type I I I 1 \mathrm {III}_{1} factor M M . We provide an explicit construction of a full factor of type I I I 1 \mathrm {III}_{1} with separable predual such that the outer automorphism group is minimal, i.e. this embedding is an isomorphism and a homeomorphism. We obtain such a I I I 1 \mathrm {III}_{1} factor by using an amalgamated free product construction. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/tran/9324 |