The logarithmic Dirichlet Laplacian on Ahlfors regular spaces

We introduce the logarithmic analogue of the Laplace-Beltrami operator on Ahlfors regular metric-measure spaces. This operator is intrinsically defined with spectral properties analogous to those of elliptic pseudo-differential operators on Riemannian manifolds. Specifically, its heat semigroup cons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2025-01
Hauptverfasser: Gerontogiannis, Dimitris, Mesland, Bram
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce the logarithmic analogue of the Laplace-Beltrami operator on Ahlfors regular metric-measure spaces. This operator is intrinsically defined with spectral properties analogous to those of elliptic pseudo-differential operators on Riemannian manifolds. Specifically, its heat semigroup consists of compact operators which are trace-class after some critical point in time. Moreover, its domain is a Banach module over the Dini continuous functions and every Hölder continuous function is a smooth vector. Finally, the operator is compatible, in the sense of noncommutative geometry, with the action of a large class of non-isometric homeomorphisms.
ISSN:0002-9947
1088-6850
DOI:10.1090/tran/9277