The positive-definite completion problem
We study the positive-definite completion problem for kernels on a variety of domains and prove results concerning the existence, uniqueness, and characterization of solutions. In particular, we study a special solution called the canonical completion which is the reproducing kernel analogue of the...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2024-06, Vol.377 (9), p.6549-6594 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the positive-definite completion problem for kernels on a variety of domains and prove results concerning the existence, uniqueness, and characterization of solutions. In particular, we study a special solution called the canonical completion which is the reproducing kernel analogue of the determinant-maximizing completion known to exist for matrices. We establish several results concerning its existence and uniqueness, which include algebraic and variational characterizations. Notably, we prove the existence of a canonical completion for domains which are equivalent to the band containing the diagonal. This corresponds to the existence of a canonical extension in the context of the classical extension problem of positive-definite functions, which can be understood as the solution to an abstract Cauchy problem in a certain reproducing kernel Hilbert space. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/tran/9194 |