Sharp weighted log-Sobolev inequalities: Characterization of equality cases and applications
By using optimal mass transport theory, we provide a direct proof to the sharp L p L^p -log-Sobolev inequality ( p ≥ 1 ) (p\geq 1) involving a log-concave homogeneous weight on an open convex cone E ⊆ R n E\subseteq \mathbb R^n . The perk of this proof is that it allows to characterize the extremal...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2024-07 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | By using optimal mass transport theory, we provide a direct proof to the sharp
L
p
L^p
-log-Sobolev inequality
(
p
≥
1
)
(p\geq 1)
involving a log-concave homogeneous weight on an open convex cone
E
⊆
R
n
E\subseteq \mathbb R^n
. The perk of this proof is that it allows to characterize the extremal functions realizing the equality cases in the
L
p
L^p
-log-Sobolev inequality. The characterization of the equality cases is new for
p
≥
n
p\geq n
even in the unweighted setting and
E
=
R
n
E=\mathbb R^n
. As an application, we provide a sharp weighted hypercontractivity estimate for the Hopf-Lax semigroup related to the Hamilton-Jacobi equation, characterizing also the equality cases. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/tran/9163 |