Sharp weighted log-Sobolev inequalities: Characterization of equality cases and applications

By using optimal mass transport theory, we provide a direct proof to the sharp L p L^p -log-Sobolev inequality ( p ≥ 1 ) (p\geq 1) involving a log-concave homogeneous weight on an open convex cone E ⊆ R n E\subseteq \mathbb R^n . The perk of this proof is that it allows to characterize the extremal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2024-07
Hauptverfasser: Balogh, Zoltán, Don, Sebastiano, Kristály, Alexandru
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By using optimal mass transport theory, we provide a direct proof to the sharp L p L^p -log-Sobolev inequality ( p ≥ 1 ) (p\geq 1) involving a log-concave homogeneous weight on an open convex cone E ⊆ R n E\subseteq \mathbb R^n . The perk of this proof is that it allows to characterize the extremal functions realizing the equality cases in the L p L^p -log-Sobolev inequality. The characterization of the equality cases is new for p ≥ n p\geq n even in the unweighted setting and E = R n E=\mathbb R^n . As an application, we provide a sharp weighted hypercontractivity estimate for the Hopf-Lax semigroup related to the Hamilton-Jacobi equation, characterizing also the equality cases.
ISSN:0002-9947
1088-6850
DOI:10.1090/tran/9163