On physical measures of multi-singular hyperbolic vector fields
Bonatti and da Luz have introduced the class of multi-singular hyperbolic vector fields to characterize systems whose periodic orbits and singularities do not bifurcate under perturbation (called star vector fields). In this paper, we study the Sinaï-Ruelle-Bowen measures for multi-singular hyperbol...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2024-07 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bonatti and da Luz have introduced the class of multi-singular hyperbolic vector fields to characterize systems whose periodic orbits and singularities do not bifurcate under perturbation (called star vector fields).
In this paper, we study the Sinaï-Ruelle-Bowen measures for multi-singular hyperbolic vector fields: in a C 1 C^1 open and C 1 C^1 dense subset of multi-singular hyperbolic vector fields, each C ∞ C^\infty one admits finitely many physical measures whose basins cover a full Lebesgue measure subset of the manifold. Similar results are also obtained for C 1 C^1 generic multi-singular hyperbolic vector fields. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/tran/9161 |