On physical measures of multi-singular hyperbolic vector fields

Bonatti and da Luz have introduced the class of multi-singular hyperbolic vector fields to characterize systems whose periodic orbits and singularities do not bifurcate under perturbation (called star vector fields). In this paper, we study the Sinaï-Ruelle-Bowen measures for multi-singular hyperbol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2024-07
Hauptverfasser: Crovisier, Sylvain, Wang, Xiaodong, Yang, Dawei, Zhang, Jinhua
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bonatti and da Luz have introduced the class of multi-singular hyperbolic vector fields to characterize systems whose periodic orbits and singularities do not bifurcate under perturbation (called star vector fields). In this paper, we study the Sinaï-Ruelle-Bowen measures for multi-singular hyperbolic vector fields: in a C 1 C^1 open and C 1 C^1 dense subset of multi-singular hyperbolic vector fields, each C ∞ C^\infty one admits finitely many physical measures whose basins cover a full Lebesgue measure subset of the manifold. Similar results are also obtained for C 1 C^1 generic multi-singular hyperbolic vector fields.
ISSN:0002-9947
1088-6850
DOI:10.1090/tran/9161