Wild solutions to scalar Euler-Lagrange equations

We study very weak solutions to scalar Euler-Lagrange equations associated with quadratic convex functionals. We investigate whether W 1 , 1 W^{1,1} solutions are necessarily W loc 1 , 2 W^{1,2}_{\operatorname {loc}} , which would make the theories by De Giorgi-Nash and Schauder applicable. We answe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2024-07
1. Verfasser: Johansson, Carl
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study very weak solutions to scalar Euler-Lagrange equations associated with quadratic convex functionals. We investigate whether W 1 , 1 W^{1,1} solutions are necessarily W loc 1 , 2 W^{1,2}_{\operatorname {loc}} , which would make the theories by De Giorgi-Nash and Schauder applicable. We answer this question positively for a suitable class of functionals. This is an extension of Weyl’s classical lemma for the Laplace equation to a wider class of equations under stronger regularity assumptions. Conversely, using convex integration, we show that outside this class of functionals, there exist W 1 , 1 W^{1,1} solutions of locally infinite energy to scalar Euler-Lagrange equations. In addition, we prove an intermediate result which permits the regularity of a W 1 , 1 W^{1,1} solution to be improved to W loc 1 , 2 W^{1,2}_{\operatorname {loc}} under suitable assumptions on the functional and solution.
ISSN:0002-9947
1088-6850
DOI:10.1090/tran/9090