Construction of -energy and associated energy measures on Sierpiński carpets

We establish the existence of a scaling limit E p \mathcal {E}_p of discrete p p -energies on the graphs approximating a generalized Sierpiński carpet for p > d A R C p > d_{\mathrm {ARC}} , where d A R C d_{\mathrm {ARC}} is the Ahlfors regular conformal dimension of the underlying generalize...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2024-02, Vol.377 (2), p.951-1032
1. Verfasser: Shimizu, Ryosuke
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We establish the existence of a scaling limit E p \mathcal {E}_p of discrete p p -energies on the graphs approximating a generalized Sierpiński carpet for p > d A R C p > d_{\mathrm {ARC}} , where d A R C d_{\mathrm {ARC}} is the Ahlfors regular conformal dimension of the underlying generalized Sierpiński carpet. Furthermore, the function space F p \mathcal {F}_{p} defined as the collection of functions with finite p p -energies is shown to be a reflexive and separable Banach space that is dense in the set of continuous functions with respect to the supremum norm. In particular, ( E 2 , F 2 ) (\mathcal {E}_2, \mathcal {F}_2) recovers the canonical regular Dirichlet form constructed by Barlow and Bass [Ann. Inst. H. Poincaré Probab. Statist. 25 (1989), pp. 225–257] or Kusuoka and Zhou [Probab. Theory Related Fields 93 (1992), pp. 169–196]. We also provide E p \mathcal {E}_{p} -energy measures associated with the constructed p p -energy and investigate its basic properties like self-similarity and chain rule.
ISSN:0002-9947
1088-6850
DOI:10.1090/tran/9036