Ramsey monoids
Recently, Solecki [Forum Math. Sigma 7 (2019), p. 40] introduced the notion of Ramsey monoid to produce a common generalization to theorems such as Hindman’s theorem, Carlson’s theorem, and Gowers’ \operatorname {FIN}_k theorem. He proved that an entire class of finite monoids is Ramsey. Here we imp...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2024-01, Vol.377 (1), p.449-470 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recently, Solecki [Forum Math. Sigma 7 (2019), p. 40] introduced the notion of Ramsey monoid to produce a common generalization to theorems such as Hindman’s theorem, Carlson’s theorem, and Gowers’ \operatorname {FIN}_k theorem. He proved that an entire class of finite monoids is Ramsey. Here we improve this result, enlarging this class and finding a simple algebraic characterization of finite Ramsey monoids. We extend in a similar way a result of Solecki regarding a second class of monoids connected to the Furstenberg-Katznelson Ramsey theorem. The results obtained suggest a possible connection with Schützenberger’s theorem and finite automata theory. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/tran/8951 |