A non-commutative Reidemeister-Turaev torsion of homology cylinders
We compute the Reidemeister-Turaev torsion of homology cylinders which takes values in the K_1-group of the I-adic completion of the group ring \mathbb{Q}\pi _1\Sigma _{g,1}, and prove that its reduction to \widehat{\mathbb{Q}\pi _1\Sigma _{g,1}}/\hat{I}^{d+1} is a finite-type invariant of degree d....
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2023-07, Vol.376 (7), p.5045-5088 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We compute the Reidemeister-Turaev torsion of homology cylinders which takes values in the K_1-group of the I-adic completion of the group ring \mathbb{Q}\pi _1\Sigma _{g,1}, and prove that its reduction to \widehat{\mathbb{Q}\pi _1\Sigma _{g,1}}/\hat{I}^{d+1} is a finite-type invariant of degree d. We also show that the 1-loop part of the LMO homomorphism and the Enomoto-Satoh trace can be recovered from the leading term of our torsion. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/tran/8925 |