A non-commutative Reidemeister-Turaev torsion of homology cylinders

We compute the Reidemeister-Turaev torsion of homology cylinders which takes values in the K_1-group of the I-adic completion of the group ring \mathbb{Q}\pi _1\Sigma _{g,1}, and prove that its reduction to \widehat{\mathbb{Q}\pi _1\Sigma _{g,1}}/\hat{I}^{d+1} is a finite-type invariant of degree d....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2023-07, Vol.376 (7), p.5045-5088
Hauptverfasser: Nozaki, Yuta, Sato, Masatoshi, Suzuki, Masaaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We compute the Reidemeister-Turaev torsion of homology cylinders which takes values in the K_1-group of the I-adic completion of the group ring \mathbb{Q}\pi _1\Sigma _{g,1}, and prove that its reduction to \widehat{\mathbb{Q}\pi _1\Sigma _{g,1}}/\hat{I}^{d+1} is a finite-type invariant of degree d. We also show that the 1-loop part of the LMO homomorphism and the Enomoto-Satoh trace can be recovered from the leading term of our torsion.
ISSN:0002-9947
1088-6850
DOI:10.1090/tran/8925