An (\infty ,2) -categorical pasting theorem
We show that any pasting diagram in any (\infty ,2)-category has a homotopically unique composite. This is achieved by showing that the free 2-category generated by a pasting scheme is the homotopy colimit of its cells as an (\infty ,2)-category. We prove this explicitly in the simplicial categories...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2023-01, Vol.376 (1), p.555-597, Article 555 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that any pasting diagram in any (\infty ,2)-category has a homotopically unique composite. This is achieved by showing that the free 2-category generated by a pasting scheme is the homotopy colimit of its cells as an (\infty ,2)-category. We prove this explicitly in the simplicial categories model and then explain how to deduce the model-independent statement from that calculation. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/tran/8783 |