Necessary and sufficient conditions to Bernstein theorem of a Hessian equation

The Hessian quotient equations \begin{equation} S_{k,l}(D^2u)\equiv \frac {S_k(D^2u)}{S_l(D^2u)}=1, \ \ \forall x\in {\mathbb {R}}^n \end{equation} were studied for k-th symmetric elementary function S_k(D^2u) of eigenvalues \lambda (D^2u) of the Hessian matrix D^2u, where 0\leq l

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2022-07, Vol.375 (7), p.4873-4892
1. Verfasser: Du, Shi-Zhong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Hessian quotient equations \begin{equation} S_{k,l}(D^2u)\equiv \frac {S_k(D^2u)}{S_l(D^2u)}=1, \ \ \forall x\in {\mathbb {R}}^n \end{equation} were studied for k-th symmetric elementary function S_k(D^2u) of eigenvalues \lambda (D^2u) of the Hessian matrix D^2u, where 0\leq l
ISSN:0002-9947
1088-6850
DOI:10.1090/tran/8686