Surfaces on the Severi line in positive characteristic

Let \mathbf {k} be an algebraically closed field, a minimal surface X over \mathbf {k} of maximal Albanese dimension is called on the Severi line if the ‘Severi equality’: K^2_X=4\chi (\mathcal {O}_X) holds. We prove that X is on the Severi line if and only if its canonical model X_{\mathrm {can}} a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2022-09, Vol.375 (9), p.6015
Hauptverfasser: Gu, Yi, Sun, Xiaotao, Zhou, Mingshuo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let \mathbf {k} be an algebraically closed field, a minimal surface X over \mathbf {k} of maximal Albanese dimension is called on the Severi line if the ‘Severi equality’: K^2_X=4\chi (\mathcal {O}_X) holds. We prove that X is on the Severi line if and only if its canonical model X_{\mathrm {can}} admits a flat double cover over an Abelian surface.
ISSN:0002-9947
1088-6850
DOI:10.1090/tran/8676