Surfaces on the Severi line in positive characteristic
Let \mathbf {k} be an algebraically closed field, a minimal surface X over \mathbf {k} of maximal Albanese dimension is called on the Severi line if the ‘Severi equality’: K^2_X=4\chi (\mathcal {O}_X) holds. We prove that X is on the Severi line if and only if its canonical model X_{\mathrm {can}} a...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2022-09, Vol.375 (9), p.6015 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \mathbf {k} be an algebraically closed field, a minimal surface X over \mathbf {k} of maximal Albanese dimension is called on the Severi line if the ‘Severi equality’: K^2_X=4\chi (\mathcal {O}_X) holds. We prove that X is on the Severi line if and only if its canonical model X_{\mathrm {can}} admits a flat double cover over an Abelian surface. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/tran/8676 |