On the tangent space to the Hilbert scheme of points in
In this paper we study the tangent space to the Hilbert scheme H i l b d P 3 \mathrm {Hilb}^d \mathbf {P}^3 , motivated by Haiman’s work on H i l b d P 2 \mathrm {Hilb}^d \mathbf {P}^2 and by a long-standing conjecture of Briançon and Iarrobino [J. Algebra 55 (1978), pp. 536–544] on the most singula...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2022-07 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we study the tangent space to the Hilbert scheme
H
i
l
b
d
P
3
\mathrm {Hilb}^d \mathbf {P}^3
, motivated by Haiman’s work on
H
i
l
b
d
P
2
\mathrm {Hilb}^d \mathbf {P}^2
and by a long-standing conjecture of Briançon and Iarrobino [J. Algebra 55 (1978), pp. 536–544] on the most singular point in
H
i
l
b
d
P
n
\mathrm {Hilb}^d \mathbf {P}^n
. For points parametrizing monomial subschemes, we consider a decomposition of the tangent space into six distinguished subspaces, and show that a fat point exhibits an extremal behavior in this respect. This decomposition is also used to characterize smooth monomial points on the Hilbert scheme. We prove the first Briançon-Iarrobino conjecture up to a factor of
4
3
\frac {4}{3}
, and improve the known asymptotic bound on the dimension of
H
i
l
b
d
P
3
\mathrm {Hilb}^d \mathbf {P}^3
. Furthermore, we construct infinitely many counterexamples to the second Briançon-Iarrobino conjecture, and we also settle a weaker conjecture of Sturmfels in the negative. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/tran/8657 |