On the tangent space to the Hilbert scheme of points in

In this paper we study the tangent space to the Hilbert scheme H i l b d P 3 \mathrm {Hilb}^d \mathbf {P}^3 , motivated by Haiman’s work on H i l b d P 2 \mathrm {Hilb}^d \mathbf {P}^2 and by a long-standing conjecture of Briançon and Iarrobino [J. Algebra 55 (1978), pp. 536–544] on the most singula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2022-07
Hauptverfasser: Ramkumar, Ritvik, Sammartano, Alessio
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we study the tangent space to the Hilbert scheme H i l b d P 3 \mathrm {Hilb}^d \mathbf {P}^3 , motivated by Haiman’s work on H i l b d P 2 \mathrm {Hilb}^d \mathbf {P}^2 and by a long-standing conjecture of Briançon and Iarrobino [J. Algebra 55 (1978), pp. 536–544] on the most singular point in H i l b d P n \mathrm {Hilb}^d \mathbf {P}^n . For points parametrizing monomial subschemes, we consider a decomposition of the tangent space into six distinguished subspaces, and show that a fat point exhibits an extremal behavior in this respect. This decomposition is also used to characterize smooth monomial points on the Hilbert scheme. We prove the first Briançon-Iarrobino conjecture up to a factor of 4 3 \frac {4}{3} , and improve the known asymptotic bound on the dimension of H i l b d P 3 \mathrm {Hilb}^d \mathbf {P}^3 . Furthermore, we construct infinitely many counterexamples to the second Briançon-Iarrobino conjecture, and we also settle a weaker conjecture of Sturmfels in the negative.
ISSN:0002-9947
1088-6850
DOI:10.1090/tran/8657