Schatten class Hankel operators on the Segal-Bargmann space and the Berger-Coburn phenomenon

We give a complete characterization of Schatten class Hankel operators H_f acting on weighted Segal-Bargmann spaces F^2(\varphi ) using the notion of integral distance to analytic functions in \mathbb {C}^n and Hörmander’s \bar \partial-theory. Using our characterization, for f\in L^\infty and 1

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2022-05, Vol.375 (5), p.3733
Hauptverfasser: Hu, Zhangjian, Virtanen, Jani
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a complete characterization of Schatten class Hankel operators H_f acting on weighted Segal-Bargmann spaces F^2(\varphi ) using the notion of integral distance to analytic functions in \mathbb {C}^n and Hörmander’s \bar \partial-theory. Using our characterization, for f\in L^\infty and 1
ISSN:0002-9947
1088-6850
DOI:10.1090/tran/8638