On topological models of zero entropy loosely Bernoulli systems

We provide a purely topological characterisation of uniquely ergodic topological dynamical systems (TDSs) whose unique invariant measure is zero entropy loosely Bernoulli (following Ratner, we call such measures loosely Kronecker). At the heart of our proofs lies Feldman-Katok continuity (FK-continu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2022-09, Vol.375 (9), p.6155
Hauptverfasser: Felipe García-Ramos, Dominik Kwietniak
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We provide a purely topological characterisation of uniquely ergodic topological dynamical systems (TDSs) whose unique invariant measure is zero entropy loosely Bernoulli (following Ratner, we call such measures loosely Kronecker). At the heart of our proofs lies Feldman-Katok continuity (FK-continuity for short), that is, continuity with respect to the change of metric to the Feldman-Katok pseudometric. Feldman-Katok pseudometric is a topological analog of f-bar (edit) metric for symbolic systems. We also study an opposite of FK-continuity, coined FK-sensitivity. We obtain a version of Auslander-Yorke dichotomies: minimal TDSs are either FK-continuous or FK-sensitive, and transitive TDSs are either almost FK-continuous or FK-sensitive.
ISSN:0002-9947
1088-6850
DOI:10.1090/tran/8616