Total curvature of planar graphs with nonnegative combinatorial curvature
We prove that the total curvature of any planar graph with nonnegative combinatorial curvature is an integral multiple of 112\frac {1}{12}. As a corollary, this answers a question proposed by T. Réti.
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2022-12, Vol.375 (12), p.8423-8444 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that the total curvature of any planar graph with nonnegative combinatorial curvature is an integral multiple of 112\frac {1}{12}. As a corollary, this answers a question proposed by T. Réti. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/tran/8536 |