Total curvature of planar graphs with nonnegative combinatorial curvature

We prove that the total curvature of any planar graph with nonnegative combinatorial curvature is an integral multiple of 112\frac {1}{12}. As a corollary, this answers a question proposed by T. Réti.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2022-12, Vol.375 (12), p.8423-8444
Hauptverfasser: Hua, Bobo, Su, Yanhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that the total curvature of any planar graph with nonnegative combinatorial curvature is an integral multiple of 112\frac {1}{12}. As a corollary, this answers a question proposed by T. Réti.
ISSN:0002-9947
1088-6850
DOI:10.1090/tran/8536