Externally definable quotients and NIP expansions of the real ordered additive group
Let R\mathscr {R} be an NIP\mathrm {NIP} expansion of (R,>,+)(\mathbb {R},>,+) by closed subsets of Rn\mathbb {R}^n and continuous functions f:Rm→Rnf : \mathbb {R}^m \to \mathbb {R}^n. Then R\mathscr {R} is generically locally o-minimal. This follows from a more general theorem on NIP\mathrm {...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2022-03, Vol.375 (3), p.1551-1578 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let R\mathscr {R} be an NIP\mathrm {NIP} expansion of (R,>,+)(\mathbb {R},>,+) by closed subsets of Rn\mathbb {R}^n and continuous functions f:Rm→Rnf : \mathbb {R}^m \to \mathbb {R}^n. Then R\mathscr {R} is generically locally o-minimal. This follows from a more general theorem on NIP\mathrm {NIP} expansions of locally compact groups, which itself follows from a result on quotients of definable sets in ℵ1\aleph _1-saturated NIP\mathrm {NIP} structures by equivalence relations which are both externally definable and ⋀\bigwedge-definable. We also show that R\mathscr {R} is strongly dependent if and only if R\mathscr {R} is either o-minimal or (R,>,+,αZ)(\mathbb {R},>,+,\alpha \mathbb {Z})-minimal for some α>0\alpha > 0. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/tran/8499 |