Hyperelliptic integrals and mirrors of the Johnson–Kollár del Pezzo surfaces
For all integers k > 0 k>0 , we prove that the hypergeometric function \[ I ^ k ( α ) = ∑ j = 0 ∞ ( ( 8 k + 4 ) j ) ! j ! ( 2 j ) ! ( ( 2 k + 1 ) j ) ! 2 ( ( 4 k + 1 ) j ) ! α j \widehat {I}_k(\alpha )=\sum _{j=0}^\infty \frac {\bigl ((8k+4)j\bigr )!j!}{(2j)!\bigl ((2k+1)j\bigr )!^2 \bigl ((...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2021-12, Vol.374 (12), p.8603-8637 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For all integers
k
>
0
k>0
, we prove that the hypergeometric function
\[
I
^
k
(
α
)
=
∑
j
=
0
∞
(
(
8
k
+
4
)
j
)
!
j
!
(
2
j
)
!
(
(
2
k
+
1
)
j
)
!
2
(
(
4
k
+
1
)
j
)
!
α
j
\widehat {I}_k(\alpha )=\sum _{j=0}^\infty \frac {\bigl ((8k+4)j\bigr )!j!}{(2j)!\bigl ((2k+1)j\bigr )!^2 \bigl ((4k+1)j\bigr )!} \ \alpha ^j
\]
is a period of a pencil of curves of genus
3
k
+
1
3k+1
. We prove that the function
I
^
k
\widehat {I}_k
is a generating function of Gromov–Witten invariants of the family of anticanonical del Pezzo hypersurfaces
X
=
X
8
k
+
4
⊂
P
(
2
,
2
k
+
1
,
2
k
+
1
,
4
k
+
1
)
X=X_{8k+4} \subset \mathbb {P}(2,2k+1,2k+1,4k+1)
. Thus, the pencil is a Landau–Ginzburg mirror of the family. The surfaces
X
X
were first constructed by Johnson and Kollár. The feature of these surfaces that makes our mirror construction especially interesting is that
|
−
K
X
|
=
|
O
X
(
1
)
|
=
∅
|-K_X|=|\mathcal {O}_X (1)|=\varnothing
. This means that there is no way to form a Calabi–Yau pair
(
X
,
D
)
(X,D)
out of
X
X
and hence there is no known mirror construction for
X
X
other than the one given here. We also discuss the connection between our construction and work of Beukers, Cohen and Mellit on hypergeometric functions. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/tran/8465 |