An improvement on Furstenberg's intersection problem
In this paper, we study a problem posed by Furstenberg on intersections between \times 2, \times 3 invariant sets. We present here a direct geometrical counting argument to revisit a theorem of Wu and Shmerkin. This argument can be used to obtain further improvements. For example, we show that if A_...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2021-09, Vol.374 (9), p.6583-6610 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study a problem posed by Furstenberg on intersections between \times 2, \times 3 invariant sets. We present here a direct geometrical counting argument to revisit a theorem of Wu and Shmerkin. This argument can be used to obtain further improvements. For example, we show that if A_2,A_3\subset [0,1] are closed and \times 2, \times 3 invariant respectively, assuming that \dim A_2+\dim A_3 |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/tran/8410 |