An improvement on Furstenberg's intersection problem

In this paper, we study a problem posed by Furstenberg on intersections between \times 2, \times 3 invariant sets. We present here a direct geometrical counting argument to revisit a theorem of Wu and Shmerkin. This argument can be used to obtain further improvements. For example, we show that if A_...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2021-09, Vol.374 (9), p.6583-6610
1. Verfasser: Yu, Han
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study a problem posed by Furstenberg on intersections between \times 2, \times 3 invariant sets. We present here a direct geometrical counting argument to revisit a theorem of Wu and Shmerkin. This argument can be used to obtain further improvements. For example, we show that if A_2,A_3\subset [0,1] are closed and \times 2, \times 3 invariant respectively, assuming that \dim A_2+\dim A_3
ISSN:0002-9947
1088-6850
DOI:10.1090/tran/8410