Reduction techniques for the finitistic dimension
In this paper we develop new reduction techniques for testing the finiteness of the finitistic dimension of a finite dimensional algebra over a field. Viewing the latter algebra as a quotient of a path algebra, we propose two operations on the quiver of the algebra, namely arrow removal and vertex r...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2021-10, Vol.374 (10), p.6839 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we develop new reduction techniques for testing the finiteness of the finitistic dimension of a finite dimensional algebra over a field. Viewing the latter algebra as a quotient of a path algebra, we propose two operations on the quiver of the algebra, namely arrow removal and vertex removal. The former gives rise to cleft extensions and the latter to recollements. These two operations provide us new practical methods to detect algebras of finite finitistic dimension. We illustrate our methods with many examples. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/tran/8409 |