Finite rigid sets in flip graphs

We show that for most pairs of surfaces, there exists a finite subgraph of the flip graph of the first surface so that any injective homomorphism of this finite subgraph into the flip graph of the second surface can be extended uniquely to an injective homomorphism between the two flip graphs. Combi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2022-02, Vol.375 (2), p.847-872
1. Verfasser: Shinkle, Emily
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 872
container_issue 2
container_start_page 847
container_title Transactions of the American Mathematical Society
container_volume 375
creator Shinkle, Emily
description We show that for most pairs of surfaces, there exists a finite subgraph of the flip graph of the first surface so that any injective homomorphism of this finite subgraph into the flip graph of the second surface can be extended uniquely to an injective homomorphism between the two flip graphs. Combined with a result of Aramayona-Koberda-Parlier, this implies that any such injective homomorphism of this finite set is induced by an embedding of the surfaces.
doi_str_mv 10.1090/tran/8407
format Article
fullrecord <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tran_8407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_tran_8407</sourcerecordid><originalsourceid>FETCH-LOGICAL-a258t-4c43f90b8914bc0b952bc7cd622651f1664f4cb136df9612e623d3c9010dbadc3</originalsourceid><addsrcrecordid>eNp9j81KAzEURoMoOLYufIMs3LgYe2-SySRLKVaFghu7DvmtkXYcktn49naoa1cfHxwOHELuEB4RNKymYoeVEtBfkAZBqVaqDi5JAwCs1Vr01-Sm1q_TBaFkQ-gmD3mKtOR9DrTGqdI80HTII90XO37WJblK9lDj7d8uyG7z_LF-bbfvL2_rp21rWaemVnjBkwanNArnwemOOd_7IBmTHSaUUiThHXIZkpbIomQ8cK8BITgbPF-Qh7PXl-9aS0xmLPloy49BMHOamdPMnHZi78-sPdZ_sF_PsUwp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Finite rigid sets in flip graphs</title><source>American Mathematical Society Publications</source><creator>Shinkle, Emily</creator><creatorcontrib>Shinkle, Emily</creatorcontrib><description>We show that for most pairs of surfaces, there exists a finite subgraph of the flip graph of the first surface so that any injective homomorphism of this finite subgraph into the flip graph of the second surface can be extended uniquely to an injective homomorphism between the two flip graphs. Combined with a result of Aramayona-Koberda-Parlier, this implies that any such injective homomorphism of this finite set is induced by an embedding of the surfaces.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/8407</identifier><language>eng</language><ispartof>Transactions of the American Mathematical Society, 2022-02, Vol.375 (2), p.847-872</ispartof><rights>Copyright 2021, American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a258t-4c43f90b8914bc0b952bc7cd622651f1664f4cb136df9612e623d3c9010dbadc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/tran/2022-375-02/S0002-9947-2021-08407-X/S0002-9947-2021-08407-X.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/tran/2022-375-02/S0002-9947-2021-08407-X/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,780,784,23327,27923,27924,77707,77717</link.rule.ids></links><search><creatorcontrib>Shinkle, Emily</creatorcontrib><title>Finite rigid sets in flip graphs</title><title>Transactions of the American Mathematical Society</title><description>We show that for most pairs of surfaces, there exists a finite subgraph of the flip graph of the first surface so that any injective homomorphism of this finite subgraph into the flip graph of the second surface can be extended uniquely to an injective homomorphism between the two flip graphs. Combined with a result of Aramayona-Koberda-Parlier, this implies that any such injective homomorphism of this finite set is induced by an embedding of the surfaces.</description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9j81KAzEURoMoOLYufIMs3LgYe2-SySRLKVaFghu7DvmtkXYcktn49naoa1cfHxwOHELuEB4RNKymYoeVEtBfkAZBqVaqDi5JAwCs1Vr01-Sm1q_TBaFkQ-gmD3mKtOR9DrTGqdI80HTII90XO37WJblK9lDj7d8uyG7z_LF-bbfvL2_rp21rWaemVnjBkwanNArnwemOOd_7IBmTHSaUUiThHXIZkpbIomQ8cK8BITgbPF-Qh7PXl-9aS0xmLPloy49BMHOamdPMnHZi78-sPdZ_sF_PsUwp</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Shinkle, Emily</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220201</creationdate><title>Finite rigid sets in flip graphs</title><author>Shinkle, Emily</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a258t-4c43f90b8914bc0b952bc7cd622651f1664f4cb136df9612e623d3c9010dbadc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shinkle, Emily</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shinkle, Emily</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite rigid sets in flip graphs</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>375</volume><issue>2</issue><spage>847</spage><epage>872</epage><pages>847-872</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>We show that for most pairs of surfaces, there exists a finite subgraph of the flip graph of the first surface so that any injective homomorphism of this finite subgraph into the flip graph of the second surface can be extended uniquely to an injective homomorphism between the two flip graphs. Combined with a result of Aramayona-Koberda-Parlier, this implies that any such injective homomorphism of this finite set is induced by an embedding of the surfaces.</abstract><doi>10.1090/tran/8407</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9947
ispartof Transactions of the American Mathematical Society, 2022-02, Vol.375 (2), p.847-872
issn 0002-9947
1088-6850
language eng
recordid cdi_crossref_primary_10_1090_tran_8407
source American Mathematical Society Publications
title Finite rigid sets in flip graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A18%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20rigid%20sets%20in%20flip%20graphs&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Shinkle,%20Emily&rft.date=2022-02-01&rft.volume=375&rft.issue=2&rft.spage=847&rft.epage=872&rft.pages=847-872&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/8407&rft_dat=%3Cams_cross%3E10_1090_tran_8407%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true