Finite rigid sets in flip graphs

We show that for most pairs of surfaces, there exists a finite subgraph of the flip graph of the first surface so that any injective homomorphism of this finite subgraph into the flip graph of the second surface can be extended uniquely to an injective homomorphism between the two flip graphs. Combi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2022-02, Vol.375 (2), p.847-872
1. Verfasser: Shinkle, Emily
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that for most pairs of surfaces, there exists a finite subgraph of the flip graph of the first surface so that any injective homomorphism of this finite subgraph into the flip graph of the second surface can be extended uniquely to an injective homomorphism between the two flip graphs. Combined with a result of Aramayona-Koberda-Parlier, this implies that any such injective homomorphism of this finite set is induced by an embedding of the surfaces.
ISSN:0002-9947
1088-6850
DOI:10.1090/tran/8407