Critical value asymptotics for the contact process on random graphs
Recent progress in the study of the contact process (see Shankar Bhamidi, Danny Nam, Oanh Nguyen, and Allan Sly [Ann. Probab. 49 (2021), pp. 244–286]) has verified that the extinction-survival threshold \lambda _1 on a Galton-Watson tree is strictly positive if and only if the offspring distribution...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2022-06, Vol.375 (6), p.3899-3967 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent progress in the study of the contact process (see Shankar Bhamidi, Danny Nam, Oanh Nguyen, and Allan Sly [Ann. Probab. 49 (2021), pp. 244–286]) has verified that the extinction-survival threshold \lambda _1 on a Galton-Watson tree is strictly positive if and only if the offspring distribution \xi has an exponential tail. In this paper, we derive the first-order asymptotics of \lambda _1 for the contact process on Galton-Watson trees and its corresponding analog for random graphs. In particular, if \xi is appropriately concentrated around its mean, we demonstrate that \lambda _1(\xi ) \sim 1/\mathbb {E} \xi as \mathbb {E}\xi \rightarrow \infty, which matches with the known asymptotics on d-regular trees. The same results for the short-long survival threshold on the Erdős-Rényi and other random graphs are shown as well. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/tran/8399 |