Approximating rational points on toric varieties

Given a smooth projective variety X over a number field k and P\in X(k), the first author conjectured that in a precise sense, any sequence that approximates P sufficiently well must lie on a rational curve. We prove this conjecture for smooth split toric surfaces conditional on Vojta's conject...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2021-05, Vol.374 (5), p.3557-3577
Hauptverfasser: McKinnon, David, Satriano, Matthew
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a smooth projective variety X over a number field k and P\in X(k), the first author conjectured that in a precise sense, any sequence that approximates P sufficiently well must lie on a rational curve. We prove this conjecture for smooth split toric surfaces conditional on Vojta's conjecture. More generally, we show that if X is a \mathbb{Q}-factorial terminal split toric variety of arbitrary dimension, then P is better approximated by points on a rational curve than by any Zariski dense sequence.
ISSN:0002-9947
1088-6850
DOI:10.1090/tran/8318