Positivity sets of supersolutions of degenerate elliptic equations and the strong maximum principle
We investigate positivity sets of nonnegative supersolutions of the fully nonlinear elliptic equations F(x,u,Du,D2u)=0F(x,u,Du,D^2u)=0 in Ω\Omega, where Ω\Omega is an open subset of RN\mathbb {R}^N, and the validity of the strong maximum principle for F(x,u,Du,D2u)=fF(x,u,Du,D^2u)=f in Ω\Omega, with...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2021-01, Vol.374 (1), p.539-564 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate positivity sets of nonnegative supersolutions of the fully nonlinear elliptic equations F(x,u,Du,D2u)=0F(x,u,Du,D^2u)=0 in Ω\Omega, where Ω\Omega is an open subset of RN\mathbb {R}^N, and the validity of the strong maximum principle for F(x,u,Du,D2u)=fF(x,u,Du,D^2u)=f in Ω\Omega, with f∈C(Ω)f\in \mathrm {C}(\Omega ) being nonpositive. We obtain geometric characterizations of positivity sets {x∈Ω:u(x)>0}\{x\in \Omega \,:\, u(x)>0\} of nonnegative supersolutions uu and establish the strong maximum principle under some geometric assumption on the set {x∈Ω:f(x)=0}\{x\in \Omega \,:\, f(x)=0\}. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/tran/8226 |