Quadratic Gorenstein rings and the Koszul property I
Let R be a standard graded Gorenstein algebra over a field presented by quadrics. In [Compositio Math. 129 (2001), no. 1, 95-121], Conca-Rossi-Valla show that such a ring is Koszul if \mathrm {reg} R \leq 2 or if \mathrm {reg} R = 3 and c=\mathrm {codim} R \leq 4, and they ask whether this is true f...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2021-02, Vol.374 (2), p.1077-1093 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let R be a standard graded Gorenstein algebra over a field presented by quadrics. In [Compositio Math. 129 (2001), no. 1, 95-121], Conca-Rossi-Valla show that such a ring is Koszul if \mathrm {reg} R \leq 2 or if \mathrm {reg} R = 3 and c=\mathrm {codim} R \leq 4, and they ask whether this is true for \mathrm {reg} R = 3 in general. We determine sufficient conditions on a non-Koszul quadratic Cohen-Macaulay ring R that guarantee the Nagata idealization \tilde {R} = R \ltimes \omega _R(-a-1) is a non-Koszul quadratic Gorenstein ring. We prove there exist rings of regularity 3 satisfying our conditions for all c \ge 9; this yields a negative answer to the question from the above-mentioned paper. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/tran/8214 |