The Fukaya category of the pillowcase, traceless character varieties, and Khovanov cohomology

For a diagram of a 22-stranded tangle in the 33-ball we define a twisted complex of compact Lagrangians in the triangulated envelope of the Fukaya category of the smooth locus of the pillowcase. We show that this twisted complex is a functorial invariant of the isotopy class of the tangle, and that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2020-12, Vol.373 (12), p.8391-8437
Hauptverfasser: Hedden, Matthew, Herald, Christopher M., Hogancamp, Matthew, Kirk, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8437
container_issue 12
container_start_page 8391
container_title Transactions of the American Mathematical Society
container_volume 373
creator Hedden, Matthew
Herald, Christopher M.
Hogancamp, Matthew
Kirk, Paul
description For a diagram of a 22-stranded tangle in the 33-ball we define a twisted complex of compact Lagrangians in the triangulated envelope of the Fukaya category of the smooth locus of the pillowcase. We show that this twisted complex is a functorial invariant of the isotopy class of the tangle, and that it provides a factorization of Bar-Natan’s functor from the tangle cobordism category to chain complexes. In particular, the hom set of our invariant with a particular non-compact Lagrangian associated to the trivial tangle is naturally isomorphic to the reduced Khovanov chain complex of the closure of the tangle. Our construction comes from the geometry of traceless SU(2)SU(2) character varieties associated to resolutions of the tangle diagram, and was inspired by Kronheimer and Mrowka’s singular instanton link homology.
doi_str_mv 10.1090/tran/8116
format Article
fullrecord <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tran_8116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_tran_8116</sourcerecordid><originalsourceid>FETCH-LOGICAL-a258t-75878af67fa5fd63db31df4b62b25a8c48783868f8c0bd3191591a2831ceef03</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqEw8A88sCA11M6HcxlRRQFRiSUrii6O3QSSuLJNUP49icrMdHfvPXqHh5Bbzh44y9nGWxw2wLk4IwFnAKGAlJ2TgDEWhXmeZJfkyrnP-WQJiIB8FI2iu-8vnJBK9Opg7ESNpn6Oj23XmR-JTq3p3CtVp5yjssF598rSEW2rfKvcmuJQ07fGjDiYkUrTmN505jBdkwuNnVM3f3NFit1TsX0J9-_Pr9vHfYhRCj7MUsgAtcg0proWcV3FvNZJJaIqShFkMr9jEKBBsqqOec7TnGMEMZdKaRavyP2pVlrjnFW6PNq2RzuVnJWLlnLRUi5aZvbuxGLv_sF-Ab9bYys</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Fukaya category of the pillowcase, traceless character varieties, and Khovanov cohomology</title><source>American Mathematical Society Publications</source><creator>Hedden, Matthew ; Herald, Christopher M. ; Hogancamp, Matthew ; Kirk, Paul</creator><creatorcontrib>Hedden, Matthew ; Herald, Christopher M. ; Hogancamp, Matthew ; Kirk, Paul</creatorcontrib><description>For a diagram of a 22-stranded tangle in the 33-ball we define a twisted complex of compact Lagrangians in the triangulated envelope of the Fukaya category of the smooth locus of the pillowcase. We show that this twisted complex is a functorial invariant of the isotopy class of the tangle, and that it provides a factorization of Bar-Natan’s functor from the tangle cobordism category to chain complexes. In particular, the hom set of our invariant with a particular non-compact Lagrangian associated to the trivial tangle is naturally isomorphic to the reduced Khovanov chain complex of the closure of the tangle. Our construction comes from the geometry of traceless SU(2)SU(2) character varieties associated to resolutions of the tangle diagram, and was inspired by Kronheimer and Mrowka’s singular instanton link homology.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/8116</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>Research article</subject><ispartof>Transactions of the American Mathematical Society, 2020-12, Vol.373 (12), p.8391-8437</ispartof><rights>Copyright 2020 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a258t-75878af67fa5fd63db31df4b62b25a8c48783868f8c0bd3191591a2831ceef03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/tran/2020-373-12/S0002-9947-2020-08116-1/S0002-9947-2020-08116-1.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/tran/2020-373-12/S0002-9947-2020-08116-1/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,776,780,23307,27901,27902,77578,77588</link.rule.ids></links><search><creatorcontrib>Hedden, Matthew</creatorcontrib><creatorcontrib>Herald, Christopher M.</creatorcontrib><creatorcontrib>Hogancamp, Matthew</creatorcontrib><creatorcontrib>Kirk, Paul</creatorcontrib><title>The Fukaya category of the pillowcase, traceless character varieties, and Khovanov cohomology</title><title>Transactions of the American Mathematical Society</title><addtitle>Trans. Amer. Math. Soc</addtitle><description>For a diagram of a 22-stranded tangle in the 33-ball we define a twisted complex of compact Lagrangians in the triangulated envelope of the Fukaya category of the smooth locus of the pillowcase. We show that this twisted complex is a functorial invariant of the isotopy class of the tangle, and that it provides a factorization of Bar-Natan’s functor from the tangle cobordism category to chain complexes. In particular, the hom set of our invariant with a particular non-compact Lagrangian associated to the trivial tangle is naturally isomorphic to the reduced Khovanov chain complex of the closure of the tangle. Our construction comes from the geometry of traceless SU(2)SU(2) character varieties associated to resolutions of the tangle diagram, and was inspired by Kronheimer and Mrowka’s singular instanton link homology.</description><subject>Research article</subject><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqEw8A88sCA11M6HcxlRRQFRiSUrii6O3QSSuLJNUP49icrMdHfvPXqHh5Bbzh44y9nGWxw2wLk4IwFnAKGAlJ2TgDEWhXmeZJfkyrnP-WQJiIB8FI2iu-8vnJBK9Opg7ESNpn6Oj23XmR-JTq3p3CtVp5yjssF598rSEW2rfKvcmuJQ07fGjDiYkUrTmN505jBdkwuNnVM3f3NFit1TsX0J9-_Pr9vHfYhRCj7MUsgAtcg0proWcV3FvNZJJaIqShFkMr9jEKBBsqqOec7TnGMEMZdKaRavyP2pVlrjnFW6PNq2RzuVnJWLlnLRUi5aZvbuxGLv_sF-Ab9bYys</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Hedden, Matthew</creator><creator>Herald, Christopher M.</creator><creator>Hogancamp, Matthew</creator><creator>Kirk, Paul</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201201</creationdate><title>The Fukaya category of the pillowcase, traceless character varieties, and Khovanov cohomology</title><author>Hedden, Matthew ; Herald, Christopher M. ; Hogancamp, Matthew ; Kirk, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a258t-75878af67fa5fd63db31df4b62b25a8c48783868f8c0bd3191591a2831ceef03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Research article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hedden, Matthew</creatorcontrib><creatorcontrib>Herald, Christopher M.</creatorcontrib><creatorcontrib>Hogancamp, Matthew</creatorcontrib><creatorcontrib>Kirk, Paul</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hedden, Matthew</au><au>Herald, Christopher M.</au><au>Hogancamp, Matthew</au><au>Kirk, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Fukaya category of the pillowcase, traceless character varieties, and Khovanov cohomology</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><stitle>Trans. Amer. Math. Soc</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>373</volume><issue>12</issue><spage>8391</spage><epage>8437</epage><pages>8391-8437</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>For a diagram of a 22-stranded tangle in the 33-ball we define a twisted complex of compact Lagrangians in the triangulated envelope of the Fukaya category of the smooth locus of the pillowcase. We show that this twisted complex is a functorial invariant of the isotopy class of the tangle, and that it provides a factorization of Bar-Natan’s functor from the tangle cobordism category to chain complexes. In particular, the hom set of our invariant with a particular non-compact Lagrangian associated to the trivial tangle is naturally isomorphic to the reduced Khovanov chain complex of the closure of the tangle. Our construction comes from the geometry of traceless SU(2)SU(2) character varieties associated to resolutions of the tangle diagram, and was inspired by Kronheimer and Mrowka’s singular instanton link homology.</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/tran/8116</doi><tpages>47</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9947
ispartof Transactions of the American Mathematical Society, 2020-12, Vol.373 (12), p.8391-8437
issn 0002-9947
1088-6850
language eng
recordid cdi_crossref_primary_10_1090_tran_8116
source American Mathematical Society Publications
subjects Research article
title The Fukaya category of the pillowcase, traceless character varieties, and Khovanov cohomology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T05%3A00%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Fukaya%20category%20of%20the%20pillowcase,%20traceless%20character%20varieties,%20and%20Khovanov%20cohomology&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Hedden,%20Matthew&rft.date=2020-12-01&rft.volume=373&rft.issue=12&rft.spage=8391&rft.epage=8437&rft.pages=8391-8437&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/8116&rft_dat=%3Cams_cross%3E10_1090_tran_8116%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true