The Fukaya category of the pillowcase, traceless character varieties, and Khovanov cohomology
For a diagram of a 22-stranded tangle in the 33-ball we define a twisted complex of compact Lagrangians in the triangulated envelope of the Fukaya category of the smooth locus of the pillowcase. We show that this twisted complex is a functorial invariant of the isotopy class of the tangle, and that...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2020-12, Vol.373 (12), p.8391-8437 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8437 |
---|---|
container_issue | 12 |
container_start_page | 8391 |
container_title | Transactions of the American Mathematical Society |
container_volume | 373 |
creator | Hedden, Matthew Herald, Christopher M. Hogancamp, Matthew Kirk, Paul |
description | For a diagram of a 22-stranded tangle in the 33-ball we define a twisted complex of compact Lagrangians in the triangulated envelope of the Fukaya category of the smooth locus of the pillowcase. We show that this twisted complex is a functorial invariant of the isotopy class of the tangle, and that it provides a factorization of Bar-Natan’s functor from the tangle cobordism category to chain complexes. In particular, the hom set of our invariant with a particular non-compact Lagrangian associated to the trivial tangle is naturally isomorphic to the reduced Khovanov chain complex of the closure of the tangle. Our construction comes from the geometry of traceless SU(2)SU(2) character varieties associated to resolutions of the tangle diagram, and was inspired by Kronheimer and Mrowka’s singular instanton link homology. |
doi_str_mv | 10.1090/tran/8116 |
format | Article |
fullrecord | <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tran_8116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_tran_8116</sourcerecordid><originalsourceid>FETCH-LOGICAL-a258t-75878af67fa5fd63db31df4b62b25a8c48783868f8c0bd3191591a2831ceef03</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqEw8A88sCA11M6HcxlRRQFRiSUrii6O3QSSuLJNUP49icrMdHfvPXqHh5Bbzh44y9nGWxw2wLk4IwFnAKGAlJ2TgDEWhXmeZJfkyrnP-WQJiIB8FI2iu-8vnJBK9Opg7ESNpn6Oj23XmR-JTq3p3CtVp5yjssF598rSEW2rfKvcmuJQ07fGjDiYkUrTmN505jBdkwuNnVM3f3NFit1TsX0J9-_Pr9vHfYhRCj7MUsgAtcg0proWcV3FvNZJJaIqShFkMr9jEKBBsqqOec7TnGMEMZdKaRavyP2pVlrjnFW6PNq2RzuVnJWLlnLRUi5aZvbuxGLv_sF-Ab9bYys</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Fukaya category of the pillowcase, traceless character varieties, and Khovanov cohomology</title><source>American Mathematical Society Publications</source><creator>Hedden, Matthew ; Herald, Christopher M. ; Hogancamp, Matthew ; Kirk, Paul</creator><creatorcontrib>Hedden, Matthew ; Herald, Christopher M. ; Hogancamp, Matthew ; Kirk, Paul</creatorcontrib><description>For a diagram of a 22-stranded tangle in the 33-ball we define a twisted complex of compact Lagrangians in the triangulated envelope of the Fukaya category of the smooth locus of the pillowcase. We show that this twisted complex is a functorial invariant of the isotopy class of the tangle, and that it provides a factorization of Bar-Natan’s functor from the tangle cobordism category to chain complexes. In particular, the hom set of our invariant with a particular non-compact Lagrangian associated to the trivial tangle is naturally isomorphic to the reduced Khovanov chain complex of the closure of the tangle. Our construction comes from the geometry of traceless SU(2)SU(2) character varieties associated to resolutions of the tangle diagram, and was inspired by Kronheimer and Mrowka’s singular instanton link homology.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/8116</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>Research article</subject><ispartof>Transactions of the American Mathematical Society, 2020-12, Vol.373 (12), p.8391-8437</ispartof><rights>Copyright 2020 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a258t-75878af67fa5fd63db31df4b62b25a8c48783868f8c0bd3191591a2831ceef03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/tran/2020-373-12/S0002-9947-2020-08116-1/S0002-9947-2020-08116-1.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/tran/2020-373-12/S0002-9947-2020-08116-1/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,776,780,23307,27901,27902,77578,77588</link.rule.ids></links><search><creatorcontrib>Hedden, Matthew</creatorcontrib><creatorcontrib>Herald, Christopher M.</creatorcontrib><creatorcontrib>Hogancamp, Matthew</creatorcontrib><creatorcontrib>Kirk, Paul</creatorcontrib><title>The Fukaya category of the pillowcase, traceless character varieties, and Khovanov cohomology</title><title>Transactions of the American Mathematical Society</title><addtitle>Trans. Amer. Math. Soc</addtitle><description>For a diagram of a 22-stranded tangle in the 33-ball we define a twisted complex of compact Lagrangians in the triangulated envelope of the Fukaya category of the smooth locus of the pillowcase. We show that this twisted complex is a functorial invariant of the isotopy class of the tangle, and that it provides a factorization of Bar-Natan’s functor from the tangle cobordism category to chain complexes. In particular, the hom set of our invariant with a particular non-compact Lagrangian associated to the trivial tangle is naturally isomorphic to the reduced Khovanov chain complex of the closure of the tangle. Our construction comes from the geometry of traceless SU(2)SU(2) character varieties associated to resolutions of the tangle diagram, and was inspired by Kronheimer and Mrowka’s singular instanton link homology.</description><subject>Research article</subject><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqEw8A88sCA11M6HcxlRRQFRiSUrii6O3QSSuLJNUP49icrMdHfvPXqHh5Bbzh44y9nGWxw2wLk4IwFnAKGAlJ2TgDEWhXmeZJfkyrnP-WQJiIB8FI2iu-8vnJBK9Opg7ESNpn6Oj23XmR-JTq3p3CtVp5yjssF598rSEW2rfKvcmuJQ07fGjDiYkUrTmN505jBdkwuNnVM3f3NFit1TsX0J9-_Pr9vHfYhRCj7MUsgAtcg0proWcV3FvNZJJaIqShFkMr9jEKBBsqqOec7TnGMEMZdKaRavyP2pVlrjnFW6PNq2RzuVnJWLlnLRUi5aZvbuxGLv_sF-Ab9bYys</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Hedden, Matthew</creator><creator>Herald, Christopher M.</creator><creator>Hogancamp, Matthew</creator><creator>Kirk, Paul</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201201</creationdate><title>The Fukaya category of the pillowcase, traceless character varieties, and Khovanov cohomology</title><author>Hedden, Matthew ; Herald, Christopher M. ; Hogancamp, Matthew ; Kirk, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a258t-75878af67fa5fd63db31df4b62b25a8c48783868f8c0bd3191591a2831ceef03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Research article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hedden, Matthew</creatorcontrib><creatorcontrib>Herald, Christopher M.</creatorcontrib><creatorcontrib>Hogancamp, Matthew</creatorcontrib><creatorcontrib>Kirk, Paul</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hedden, Matthew</au><au>Herald, Christopher M.</au><au>Hogancamp, Matthew</au><au>Kirk, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Fukaya category of the pillowcase, traceless character varieties, and Khovanov cohomology</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><stitle>Trans. Amer. Math. Soc</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>373</volume><issue>12</issue><spage>8391</spage><epage>8437</epage><pages>8391-8437</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>For a diagram of a 22-stranded tangle in the 33-ball we define a twisted complex of compact Lagrangians in the triangulated envelope of the Fukaya category of the smooth locus of the pillowcase. We show that this twisted complex is a functorial invariant of the isotopy class of the tangle, and that it provides a factorization of Bar-Natan’s functor from the tangle cobordism category to chain complexes. In particular, the hom set of our invariant with a particular non-compact Lagrangian associated to the trivial tangle is naturally isomorphic to the reduced Khovanov chain complex of the closure of the tangle. Our construction comes from the geometry of traceless SU(2)SU(2) character varieties associated to resolutions of the tangle diagram, and was inspired by Kronheimer and Mrowka’s singular instanton link homology.</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/tran/8116</doi><tpages>47</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9947 |
ispartof | Transactions of the American Mathematical Society, 2020-12, Vol.373 (12), p.8391-8437 |
issn | 0002-9947 1088-6850 |
language | eng |
recordid | cdi_crossref_primary_10_1090_tran_8116 |
source | American Mathematical Society Publications |
subjects | Research article |
title | The Fukaya category of the pillowcase, traceless character varieties, and Khovanov cohomology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T05%3A00%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Fukaya%20category%20of%20the%20pillowcase,%20traceless%20character%20varieties,%20and%20Khovanov%20cohomology&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Hedden,%20Matthew&rft.date=2020-12-01&rft.volume=373&rft.issue=12&rft.spage=8391&rft.epage=8437&rft.pages=8391-8437&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/8116&rft_dat=%3Cams_cross%3E10_1090_tran_8116%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |