The Fukaya category of the pillowcase, traceless character varieties, and Khovanov cohomology

For a diagram of a 22-stranded tangle in the 33-ball we define a twisted complex of compact Lagrangians in the triangulated envelope of the Fukaya category of the smooth locus of the pillowcase. We show that this twisted complex is a functorial invariant of the isotopy class of the tangle, and that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2020-12, Vol.373 (12), p.8391-8437
Hauptverfasser: Hedden, Matthew, Herald, Christopher M., Hogancamp, Matthew, Kirk, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a diagram of a 22-stranded tangle in the 33-ball we define a twisted complex of compact Lagrangians in the triangulated envelope of the Fukaya category of the smooth locus of the pillowcase. We show that this twisted complex is a functorial invariant of the isotopy class of the tangle, and that it provides a factorization of Bar-Natan’s functor from the tangle cobordism category to chain complexes. In particular, the hom set of our invariant with a particular non-compact Lagrangian associated to the trivial tangle is naturally isomorphic to the reduced Khovanov chain complex of the closure of the tangle. Our construction comes from the geometry of traceless SU(2)SU(2) character varieties associated to resolutions of the tangle diagram, and was inspired by Kronheimer and Mrowka’s singular instanton link homology.
ISSN:0002-9947
1088-6850
DOI:10.1090/tran/8116