Smoothly embedding Seifert fibered spaces in
Using an obstruction based on Donaldson’s theorem, we derive strong restrictions on when a Seifert fibered space Y = F ( e ; p 1 q 1 , … , p k q k ) Y = F(e; \frac {p_1}{q_1}, \ldots , \frac {p_k}{q_k}) over an orientable base surface F F can smoothly embed in S 4 S^4 . This allows us to classify pr...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2020-07, Vol.373 (7), p.4933-4974 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4974 |
---|---|
container_issue | 7 |
container_start_page | 4933 |
container_title | Transactions of the American Mathematical Society |
container_volume | 373 |
creator | Issa, Ahmad McCoy, Duncan |
description | Using an obstruction based on Donaldson’s theorem, we derive strong restrictions on when a Seifert fibered space
Y
=
F
(
e
;
p
1
q
1
,
…
,
p
k
q
k
)
Y = F(e; \frac {p_1}{q_1}, \ldots , \frac {p_k}{q_k})
over an orientable base surface
F
F
can smoothly embed in
S
4
S^4
. This allows us to classify precisely when
Y
Y
smoothly embeds provided
e
>
k
/
2
e > k/2
, where
e
e
is the normalized central weight and
k
k
is the number of singular fibers. Based on these results and an analysis of the Neumann-Siebenmann invariant
μ
¯
\overline {\mu }
, we make some conjectures concerning Seifert fibered spaces which embed in
S
4
S^4
. Finally, we also provide some applications to doubly slice Montesinos links, including a classification of the smoothly doubly slice odd pretzel knots up to mutation. |
doi_str_mv | 10.1090/tran/8095 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tran_8095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_tran_8095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c745-4194495376c9c614d395f0cd15d80f44fe67cc8b2eeb5ac6d4900d08bf7204ef3</originalsourceid><addsrcrecordid>eNotz01LxDAUheEgCtbRhf8gW8E6N-3N11IGHYUBFzP7kCY3Wpm2Q9LN_Hstujq8mwMPY_cCngRYWM_Zj2sDVl6wSoAxtTISLlkFAE1tLeprdlPK928CGlWxx_0wTfPX8cxp6CjGfvzke-oT5ZmnvqNMkZeTD1R4P96yq-SPhe7-d8UOry-HzVu9-9i-b553ddAoaxQW0cpWq2CDEhhbKxOEKGQ0kBATKR2C6RqiTvqgIlqACKZLugGk1K7Yw99tyFMpmZI75X7w-ewEuEXpFqVblO0PyblE3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Smoothly embedding Seifert fibered spaces in</title><source>American Mathematical Society Publications</source><creator>Issa, Ahmad ; McCoy, Duncan</creator><creatorcontrib>Issa, Ahmad ; McCoy, Duncan</creatorcontrib><description>Using an obstruction based on Donaldson’s theorem, we derive strong restrictions on when a Seifert fibered space
Y
=
F
(
e
;
p
1
q
1
,
…
,
p
k
q
k
)
Y = F(e; \frac {p_1}{q_1}, \ldots , \frac {p_k}{q_k})
over an orientable base surface
F
F
can smoothly embed in
S
4
S^4
. This allows us to classify precisely when
Y
Y
smoothly embeds provided
e
>
k
/
2
e > k/2
, where
e
e
is the normalized central weight and
k
k
is the number of singular fibers. Based on these results and an analysis of the Neumann-Siebenmann invariant
μ
¯
\overline {\mu }
, we make some conjectures concerning Seifert fibered spaces which embed in
S
4
S^4
. Finally, we also provide some applications to doubly slice Montesinos links, including a classification of the smoothly doubly slice odd pretzel knots up to mutation.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/8095</identifier><language>eng</language><ispartof>Transactions of the American Mathematical Society, 2020-07, Vol.373 (7), p.4933-4974</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c745-4194495376c9c614d395f0cd15d80f44fe67cc8b2eeb5ac6d4900d08bf7204ef3</citedby><cites>FETCH-LOGICAL-c745-4194495376c9c614d395f0cd15d80f44fe67cc8b2eeb5ac6d4900d08bf7204ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Issa, Ahmad</creatorcontrib><creatorcontrib>McCoy, Duncan</creatorcontrib><title>Smoothly embedding Seifert fibered spaces in</title><title>Transactions of the American Mathematical Society</title><description>Using an obstruction based on Donaldson’s theorem, we derive strong restrictions on when a Seifert fibered space
Y
=
F
(
e
;
p
1
q
1
,
…
,
p
k
q
k
)
Y = F(e; \frac {p_1}{q_1}, \ldots , \frac {p_k}{q_k})
over an orientable base surface
F
F
can smoothly embed in
S
4
S^4
. This allows us to classify precisely when
Y
Y
smoothly embeds provided
e
>
k
/
2
e > k/2
, where
e
e
is the normalized central weight and
k
k
is the number of singular fibers. Based on these results and an analysis of the Neumann-Siebenmann invariant
μ
¯
\overline {\mu }
, we make some conjectures concerning Seifert fibered spaces which embed in
S
4
S^4
. Finally, we also provide some applications to doubly slice Montesinos links, including a classification of the smoothly doubly slice odd pretzel knots up to mutation.</description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotz01LxDAUheEgCtbRhf8gW8E6N-3N11IGHYUBFzP7kCY3Wpm2Q9LN_Hstujq8mwMPY_cCngRYWM_Zj2sDVl6wSoAxtTISLlkFAE1tLeprdlPK928CGlWxx_0wTfPX8cxp6CjGfvzke-oT5ZmnvqNMkZeTD1R4P96yq-SPhe7-d8UOry-HzVu9-9i-b553ddAoaxQW0cpWq2CDEhhbKxOEKGQ0kBATKR2C6RqiTvqgIlqACKZLugGk1K7Yw99tyFMpmZI75X7w-ewEuEXpFqVblO0PyblE3w</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Issa, Ahmad</creator><creator>McCoy, Duncan</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202007</creationdate><title>Smoothly embedding Seifert fibered spaces in</title><author>Issa, Ahmad ; McCoy, Duncan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c745-4194495376c9c614d395f0cd15d80f44fe67cc8b2eeb5ac6d4900d08bf7204ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Issa, Ahmad</creatorcontrib><creatorcontrib>McCoy, Duncan</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Issa, Ahmad</au><au>McCoy, Duncan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smoothly embedding Seifert fibered spaces in</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2020-07</date><risdate>2020</risdate><volume>373</volume><issue>7</issue><spage>4933</spage><epage>4974</epage><pages>4933-4974</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>Using an obstruction based on Donaldson’s theorem, we derive strong restrictions on when a Seifert fibered space
Y
=
F
(
e
;
p
1
q
1
,
…
,
p
k
q
k
)
Y = F(e; \frac {p_1}{q_1}, \ldots , \frac {p_k}{q_k})
over an orientable base surface
F
F
can smoothly embed in
S
4
S^4
. This allows us to classify precisely when
Y
Y
smoothly embeds provided
e
>
k
/
2
e > k/2
, where
e
e
is the normalized central weight and
k
k
is the number of singular fibers. Based on these results and an analysis of the Neumann-Siebenmann invariant
μ
¯
\overline {\mu }
, we make some conjectures concerning Seifert fibered spaces which embed in
S
4
S^4
. Finally, we also provide some applications to doubly slice Montesinos links, including a classification of the smoothly doubly slice odd pretzel knots up to mutation.</abstract><doi>10.1090/tran/8095</doi><tpages>42</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9947 |
ispartof | Transactions of the American Mathematical Society, 2020-07, Vol.373 (7), p.4933-4974 |
issn | 0002-9947 1088-6850 |
language | eng |
recordid | cdi_crossref_primary_10_1090_tran_8095 |
source | American Mathematical Society Publications |
title | Smoothly embedding Seifert fibered spaces in |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A09%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smoothly%20embedding%20Seifert%20fibered%20spaces%20in&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Issa,%20Ahmad&rft.date=2020-07&rft.volume=373&rft.issue=7&rft.spage=4933&rft.epage=4974&rft.pages=4933-4974&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/8095&rft_dat=%3Ccrossref%3E10_1090_tran_8095%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |