Smoothly embedding Seifert fibered spaces in
Using an obstruction based on Donaldson’s theorem, we derive strong restrictions on when a Seifert fibered space Y = F ( e ; p 1 q 1 , … , p k q k ) Y = F(e; \frac {p_1}{q_1}, \ldots , \frac {p_k}{q_k}) over an orientable base surface F F can smoothly embed in S 4 S^4 . This allows us to classify pr...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2020-07, Vol.373 (7), p.4933-4974 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using an obstruction based on Donaldson’s theorem, we derive strong restrictions on when a Seifert fibered space
Y
=
F
(
e
;
p
1
q
1
,
…
,
p
k
q
k
)
Y = F(e; \frac {p_1}{q_1}, \ldots , \frac {p_k}{q_k})
over an orientable base surface
F
F
can smoothly embed in
S
4
S^4
. This allows us to classify precisely when
Y
Y
smoothly embeds provided
e
>
k
/
2
e > k/2
, where
e
e
is the normalized central weight and
k
k
is the number of singular fibers. Based on these results and an analysis of the Neumann-Siebenmann invariant
μ
¯
\overline {\mu }
, we make some conjectures concerning Seifert fibered spaces which embed in
S
4
S^4
. Finally, we also provide some applications to doubly slice Montesinos links, including a classification of the smoothly doubly slice odd pretzel knots up to mutation. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/tran/8095 |