Mean value property in limit for eigenfunctions of the Laplace--Beltrami operator
We consider Riemannian symmetric spaces X of noncompact-type with rank one, which accommodates all hyperbolic spaces. We characterize the eigenfunctions of the Laplace-Beltrami operator on X with arbitrary complex eigenvalues through an asymptotic version of the ball mean value property as the radiu...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2020-07, Vol.373 (7), p.4735-4756 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider Riemannian symmetric spaces X of noncompact-type with rank one, which accommodates all hyperbolic spaces. We characterize the eigenfunctions of the Laplace-Beltrami operator on X with arbitrary complex eigenvalues through an asymptotic version of the ball mean value property as the radius of the ball tends to infinity. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/tran/8078 |