Geometrically partial actions
We introduce ``geometric'' partial comodules over coalgebras in monoidal categories as an alternative notion to the notion of partial action and coaction of a Hopf algebra introduced by Caenepeel and Janssen. The name is motivated by the fact that our new notion suits better if one wants t...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2020-06, Vol.373 (6), p.4085-4143 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce ``geometric'' partial comodules over coalgebras in monoidal categories as an alternative notion to the notion of partial action and coaction of a Hopf algebra introduced by Caenepeel and Janssen. The name is motivated by the fact that our new notion suits better if one wants to describe phenomena of partial actions in algebraic geometry. Under mild conditions, the category of geometric partial comodules is shown to be complete and cocomplete and the category of partial comodules over a Hopf algebra is lax monoidal. We develop a Hopf-Galois theory for geometric partial coactions to illustrate that our new notion might be a useful additional tool in Hopf algebra theory. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/tran/8058 |