Anti-commuting varieties

We study the anti-commuting variety which consists of pairs of anti-commuting n\times n matrices. We provide an explicit description of its irreducible components and their dimensions. The GIT (geometric invariant theory) quotient of the anti-commuting variety with respect to the conjugation action...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2020-03, Vol.373 (3), p.1597-1617
Hauptverfasser: Chen, Xinhong, Wang, Weiqiang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1617
container_issue 3
container_start_page 1597
container_title Transactions of the American Mathematical Society
container_volume 373
creator Chen, Xinhong
Wang, Weiqiang
description We study the anti-commuting variety which consists of pairs of anti-commuting n\times n matrices. We provide an explicit description of its irreducible components and their dimensions. The GIT (geometric invariant theory) quotient of the anti-commuting variety with respect to the conjugation action of GL_n is shown to be of pure dimension n. We also show the semi-nilpotent anti-commuting variety (in which one matrix is required to be nilpotent) is of pure dimension n^2 and describe its irreducible components.
doi_str_mv 10.1090/tran/8017
format Article
fullrecord <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tran_8017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_tran_8017</sourcerecordid><originalsourceid>FETCH-LOGICAL-a258t-1494320e9bfc66dd186d6ce3dff328b19107337d3125e1b9add698c5243e1673</originalsourceid><addsrcrecordid>eNp9jztLBDEURoMoOK4WdpYWNhZx700yeZTL4qqwYLN9yOQhEWdWkij4791hra0-PjgcOIRcIzwgGFi24qalBlQnpEPQmkrdwynpAIBRY4Q6Jxe1vh8uCC07crOaWqZ-P45fLU9vt9-u5NhyrJfkLLmPGq_-dkF2m8fd-pluX59e1qstdazXjaIwgjOIZkheyhBQyyB95CElzvSABkFxrgJH1kccjAtBGu17JnhEqfiC3B-1vuxrLTHZz5JHV34sgp2L7Fxk56IDe3dk3Vj_wX4BAk5JEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Anti-commuting varieties</title><source>American Mathematical Society Publications</source><creator>Chen, Xinhong ; Wang, Weiqiang</creator><creatorcontrib>Chen, Xinhong ; Wang, Weiqiang</creatorcontrib><description>We study the anti-commuting variety which consists of pairs of anti-commuting n\times n matrices. We provide an explicit description of its irreducible components and their dimensions. The GIT (geometric invariant theory) quotient of the anti-commuting variety with respect to the conjugation action of GL_n is shown to be of pure dimension n. We also show the semi-nilpotent anti-commuting variety (in which one matrix is required to be nilpotent) is of pure dimension n^2 and describe its irreducible components.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/8017</identifier><language>eng</language><ispartof>Transactions of the American Mathematical Society, 2020-03, Vol.373 (3), p.1597-1617</ispartof><rights>Copyright 2019, American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a258t-1494320e9bfc66dd186d6ce3dff328b19107337d3125e1b9add698c5243e1673</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/tran/2020-373-03/S0002-9947-2019-08017-0/S0002-9947-2019-08017-0.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/tran/2020-373-03/S0002-9947-2019-08017-0/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,780,784,23328,27924,27925,77836,77846</link.rule.ids></links><search><creatorcontrib>Chen, Xinhong</creatorcontrib><creatorcontrib>Wang, Weiqiang</creatorcontrib><title>Anti-commuting varieties</title><title>Transactions of the American Mathematical Society</title><description>We study the anti-commuting variety which consists of pairs of anti-commuting n\times n matrices. We provide an explicit description of its irreducible components and their dimensions. The GIT (geometric invariant theory) quotient of the anti-commuting variety with respect to the conjugation action of GL_n is shown to be of pure dimension n. We also show the semi-nilpotent anti-commuting variety (in which one matrix is required to be nilpotent) is of pure dimension n^2 and describe its irreducible components.</description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9jztLBDEURoMoOK4WdpYWNhZx700yeZTL4qqwYLN9yOQhEWdWkij4791hra0-PjgcOIRcIzwgGFi24qalBlQnpEPQmkrdwynpAIBRY4Q6Jxe1vh8uCC07crOaWqZ-P45fLU9vt9-u5NhyrJfkLLmPGq_-dkF2m8fd-pluX59e1qstdazXjaIwgjOIZkheyhBQyyB95CElzvSABkFxrgJH1kccjAtBGu17JnhEqfiC3B-1vuxrLTHZz5JHV34sgp2L7Fxk56IDe3dk3Vj_wX4BAk5JEg</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Chen, Xinhong</creator><creator>Wang, Weiqiang</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200301</creationdate><title>Anti-commuting varieties</title><author>Chen, Xinhong ; Wang, Weiqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a258t-1494320e9bfc66dd186d6ce3dff328b19107337d3125e1b9add698c5243e1673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xinhong</creatorcontrib><creatorcontrib>Wang, Weiqiang</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xinhong</au><au>Wang, Weiqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anti-commuting varieties</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2020-03-01</date><risdate>2020</risdate><volume>373</volume><issue>3</issue><spage>1597</spage><epage>1617</epage><pages>1597-1617</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>We study the anti-commuting variety which consists of pairs of anti-commuting n\times n matrices. We provide an explicit description of its irreducible components and their dimensions. The GIT (geometric invariant theory) quotient of the anti-commuting variety with respect to the conjugation action of GL_n is shown to be of pure dimension n. We also show the semi-nilpotent anti-commuting variety (in which one matrix is required to be nilpotent) is of pure dimension n^2 and describe its irreducible components.</abstract><doi>10.1090/tran/8017</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9947
ispartof Transactions of the American Mathematical Society, 2020-03, Vol.373 (3), p.1597-1617
issn 0002-9947
1088-6850
language eng
recordid cdi_crossref_primary_10_1090_tran_8017
source American Mathematical Society Publications
title Anti-commuting varieties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A53%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anti-commuting%20varieties&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Chen,%20Xinhong&rft.date=2020-03-01&rft.volume=373&rft.issue=3&rft.spage=1597&rft.epage=1617&rft.pages=1597-1617&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/8017&rft_dat=%3Cams_cross%3E10_1090_tran_8017%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true