Anti-commuting varieties
We study the anti-commuting variety which consists of pairs of anti-commuting n\times n matrices. We provide an explicit description of its irreducible components and their dimensions. The GIT (geometric invariant theory) quotient of the anti-commuting variety with respect to the conjugation action...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2020-03, Vol.373 (3), p.1597-1617 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the anti-commuting variety which consists of pairs of anti-commuting n\times n matrices. We provide an explicit description of its irreducible components and their dimensions. The GIT (geometric invariant theory) quotient of the anti-commuting variety with respect to the conjugation action of GL_n is shown to be of pure dimension n. We also show the semi-nilpotent anti-commuting variety (in which one matrix is required to be nilpotent) is of pure dimension n^2 and describe its irreducible components. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/tran/8017 |