Anti-commuting varieties

We study the anti-commuting variety which consists of pairs of anti-commuting n\times n matrices. We provide an explicit description of its irreducible components and their dimensions. The GIT (geometric invariant theory) quotient of the anti-commuting variety with respect to the conjugation action...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2020-03, Vol.373 (3), p.1597-1617
Hauptverfasser: Chen, Xinhong, Wang, Weiqiang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the anti-commuting variety which consists of pairs of anti-commuting n\times n matrices. We provide an explicit description of its irreducible components and their dimensions. The GIT (geometric invariant theory) quotient of the anti-commuting variety with respect to the conjugation action of GL_n is shown to be of pure dimension n. We also show the semi-nilpotent anti-commuting variety (in which one matrix is required to be nilpotent) is of pure dimension n^2 and describe its irreducible components.
ISSN:0002-9947
1088-6850
DOI:10.1090/tran/8017