Localization and landscape functions on quantum graphs

We discuss explicit landscape functions for quantum graphs. By a ``landscape function'' \Upsilon (x) we mean a function that controls the localization properties of normalized eigenfunctions \psi (x) through a pointwise inequality of the form \displaystyle \vert\psi (x)\vert \le \Upsilon (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2020-03, Vol.373 (3), p.1701-1729
Hauptverfasser: Harrell II, Evans M., Maltsev, Anna V.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We discuss explicit landscape functions for quantum graphs. By a ``landscape function'' \Upsilon (x) we mean a function that controls the localization properties of normalized eigenfunctions \psi (x) through a pointwise inequality of the form \displaystyle \vert\psi (x)\vert \le \Upsilon (x). The ideal \Upsilon is a function that (a) responds to the potential energy V(x) and to the structure of the graph in some formulaic way; (b) is small in examples where eigenfunctions are suppressed by the tunneling effect; and (c) relatively large in regions where eigenfunctions may, or may not, be concentrated, as observed in specific examples. It turns out that the connectedness of a graph can present a barrier to the existence of universal landscape functions in the high-energy regime, as we show with simple examples. We therefore apply different methods in different regimes determined by the values of the potential energy V(x) and the eigenvalue parameter E.
ISSN:0002-9947
1088-6850
DOI:10.1090/tran/7908