Quasimodular moonshine and arithmetic connections

We prove the existence of a module for the largest Mathieu group, whose trace functions are weight 2 quasimodular forms. Restricting to the subgroup fixing a point, we see that the integrality of these functions is equivalent to certain divisibility conditions on the number of \mathbb{F}_p points on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2019-12, Vol.372 (12), p.8793-8813
1. Verfasser: BENEISH, LEA
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove the existence of a module for the largest Mathieu group, whose trace functions are weight 2 quasimodular forms. Restricting to the subgroup fixing a point, we see that the integrality of these functions is equivalent to certain divisibility conditions on the number of \mathbb{F}_p points on Jacobians of modular curves. Extending such expressions to arbitrary primes, we find trace functions for modules of cyclic groups of prime order with similar connections. Moreover, for cyclic groups we give an explicit vertex operator algebra construction whose trace functions are given only in terms of weight 2 Eisenstein series.
ISSN:0002-9947
1088-6850
DOI:10.1090/tran/7874