Quasimodular moonshine and arithmetic connections
We prove the existence of a module for the largest Mathieu group, whose trace functions are weight 2 quasimodular forms. Restricting to the subgroup fixing a point, we see that the integrality of these functions is equivalent to certain divisibility conditions on the number of \mathbb{F}_p points on...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2019-12, Vol.372 (12), p.8793-8813 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove the existence of a module for the largest Mathieu group, whose trace functions are weight 2 quasimodular forms. Restricting to the subgroup fixing a point, we see that the integrality of these functions is equivalent to certain divisibility conditions on the number of \mathbb{F}_p points on Jacobians of modular curves. Extending such expressions to arbitrary primes, we find trace functions for modules of cyclic groups of prime order with similar connections. Moreover, for cyclic groups we give an explicit vertex operator algebra construction whose trace functions are given only in terms of weight 2 Eisenstein series. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/tran/7874 |