Rank-two Euler systems for symmetric squares

Let p\ge 7 be a prime number, and let f be a normalized eigen-newform with good reduction at p such that its pth Fourier coefficient vanishes. We construct a rank-two Euler system attached to the p-adic realization of the symmetric square motive of f. Furthermore, we show that the nontriviality is g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2019-12, Vol.372 (12), p.8605-8619
Hauptverfasser: Büyükboduk, Kâzım, Lei, Antonio
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8619
container_issue 12
container_start_page 8605
container_title Transactions of the American Mathematical Society
container_volume 372
creator Büyükboduk, Kâzım
Lei, Antonio
description Let p\ge 7 be a prime number, and let f be a normalized eigen-newform with good reduction at p such that its pth Fourier coefficient vanishes. We construct a rank-two Euler system attached to the p-adic realization of the symmetric square motive of f. Furthermore, we show that the nontriviality is guaranteed by the nonvanishing of the leading term of the relevant L-value and the nonvanishing of a certain p-adic period modulo p.
doi_str_mv 10.1090/tran/7860
format Article
fullrecord <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tran_7860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_tran_7860</sourcerecordid><originalsourceid>FETCH-LOGICAL-a218t-de3747b0d36a42cb248b1826f23a309a8fa40f4eb48a95e1213d821724eacfc53</originalsourceid><addsrcrecordid>eNp9j01Lw0AURQdRMFYX_oMs3AhO--YjyctSSqtCoSC6Hl4mM1BtGp2XIv33NtS1q3svHC4cIW4VTBXUMBsS7WYVlnAmMgWIssQCzkUGAFrWta0uxRXzx3GCxTITD6-0-5TDT58v9tuQcj7wEDrOYz_2rgtD2vicv_eUAl-Li0hbDjd_ORHvy8Xb_Fmu1k8v88eVJK1wkG0wla0aaE1JVvtGW2wU6jJqQwZqwkgWog2NRaqLoLQyLWpVaRvIR1-Yibg__frUM6cQ3VfadJQOToEbNd2o6UbNI3t3Yqnjf7Bf0hVRUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rank-two Euler systems for symmetric squares</title><source>American Mathematical Society Publications</source><creator>Büyükboduk, Kâzım ; Lei, Antonio</creator><creatorcontrib>Büyükboduk, Kâzım ; Lei, Antonio</creatorcontrib><description>Let p\ge 7 be a prime number, and let f be a normalized eigen-newform with good reduction at p such that its pth Fourier coefficient vanishes. We construct a rank-two Euler system attached to the p-adic realization of the symmetric square motive of f. Furthermore, we show that the nontriviality is guaranteed by the nonvanishing of the leading term of the relevant L-value and the nonvanishing of a certain p-adic period modulo p.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/7860</identifier><language>eng</language><ispartof>Transactions of the American Mathematical Society, 2019-12, Vol.372 (12), p.8605-8619</ispartof><rights>Copyright 2019, American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a218t-de3747b0d36a42cb248b1826f23a309a8fa40f4eb48a95e1213d821724eacfc53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/tran/2019-372-12/S0002-9947-2019-07860-1/S0002-9947-2019-07860-1.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/tran/2019-372-12/S0002-9947-2019-07860-1/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,780,784,23328,27924,27925,77836,77846</link.rule.ids></links><search><creatorcontrib>Büyükboduk, Kâzım</creatorcontrib><creatorcontrib>Lei, Antonio</creatorcontrib><title>Rank-two Euler systems for symmetric squares</title><title>Transactions of the American Mathematical Society</title><description>Let p\ge 7 be a prime number, and let f be a normalized eigen-newform with good reduction at p such that its pth Fourier coefficient vanishes. We construct a rank-two Euler system attached to the p-adic realization of the symmetric square motive of f. Furthermore, we show that the nontriviality is guaranteed by the nonvanishing of the leading term of the relevant L-value and the nonvanishing of a certain p-adic period modulo p.</description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9j01Lw0AURQdRMFYX_oMs3AhO--YjyctSSqtCoSC6Hl4mM1BtGp2XIv33NtS1q3svHC4cIW4VTBXUMBsS7WYVlnAmMgWIssQCzkUGAFrWta0uxRXzx3GCxTITD6-0-5TDT58v9tuQcj7wEDrOYz_2rgtD2vicv_eUAl-Li0hbDjd_ORHvy8Xb_Fmu1k8v88eVJK1wkG0wla0aaE1JVvtGW2wU6jJqQwZqwkgWog2NRaqLoLQyLWpVaRvIR1-Yibg__frUM6cQ3VfadJQOToEbNd2o6UbNI3t3Yqnjf7Bf0hVRUQ</recordid><startdate>20191215</startdate><enddate>20191215</enddate><creator>Büyükboduk, Kâzım</creator><creator>Lei, Antonio</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191215</creationdate><title>Rank-two Euler systems for symmetric squares</title><author>Büyükboduk, Kâzım ; Lei, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a218t-de3747b0d36a42cb248b1826f23a309a8fa40f4eb48a95e1213d821724eacfc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Büyükboduk, Kâzım</creatorcontrib><creatorcontrib>Lei, Antonio</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Büyükboduk, Kâzım</au><au>Lei, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rank-two Euler systems for symmetric squares</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2019-12-15</date><risdate>2019</risdate><volume>372</volume><issue>12</issue><spage>8605</spage><epage>8619</epage><pages>8605-8619</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>Let p\ge 7 be a prime number, and let f be a normalized eigen-newform with good reduction at p such that its pth Fourier coefficient vanishes. We construct a rank-two Euler system attached to the p-adic realization of the symmetric square motive of f. Furthermore, we show that the nontriviality is guaranteed by the nonvanishing of the leading term of the relevant L-value and the nonvanishing of a certain p-adic period modulo p.</abstract><doi>10.1090/tran/7860</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9947
ispartof Transactions of the American Mathematical Society, 2019-12, Vol.372 (12), p.8605-8619
issn 0002-9947
1088-6850
language eng
recordid cdi_crossref_primary_10_1090_tran_7860
source American Mathematical Society Publications
title Rank-two Euler systems for symmetric squares
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A44%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rank-two%20Euler%20systems%20for%20symmetric%20squares&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=B%C3%BCy%C3%BCkboduk,%20K%C3%A2z%C4%B1m&rft.date=2019-12-15&rft.volume=372&rft.issue=12&rft.spage=8605&rft.epage=8619&rft.pages=8605-8619&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/7860&rft_dat=%3Cams_cross%3E10_1090_tran_7860%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true