Rank-two Euler systems for symmetric squares
Let p\ge 7 be a prime number, and let f be a normalized eigen-newform with good reduction at p such that its pth Fourier coefficient vanishes. We construct a rank-two Euler system attached to the p-adic realization of the symmetric square motive of f. Furthermore, we show that the nontriviality is g...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2019-12, Vol.372 (12), p.8605-8619 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let p\ge 7 be a prime number, and let f be a normalized eigen-newform with good reduction at p such that its pth Fourier coefficient vanishes. We construct a rank-two Euler system attached to the p-adic realization of the symmetric square motive of f. Furthermore, we show that the nontriviality is guaranteed by the nonvanishing of the leading term of the relevant L-value and the nonvanishing of a certain p-adic period modulo p. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/tran/7860 |