Simple ℒ-invariants for GL_{ }
Let L L be a finite extension of Q p {\mathbb Q}_p , and ρ L \rho _L be an n n -dimensional semistable noncrystalline p p -adic representation of G a l L {\mathrm {Gal}}_L with full monodromy rank. Via a study of Breuil’s (simple) L {\mathcal L} -invariants, we attach to ρ L \rho _L a locally Q p {\...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2019-12, Vol.372 (11), p.7993-8042 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
L
L
be a finite extension of
Q
p
{\mathbb Q}_p
, and
ρ
L
\rho _L
be an
n
n
-dimensional semistable noncrystalline
p
p
-adic representation of
G
a
l
L
{\mathrm {Gal}}_L
with full monodromy rank. Via a study of Breuil’s (simple)
L
{\mathcal L}
-invariants, we attach to
ρ
L
\rho _L
a locally
Q
p
{\mathbb Q}_p
-analytic representation
Π
(
ρ
L
)
\Pi (\rho _L)
of
G
L
n
(
L
)
{\mathrm {GL}}_n(L)
, which carries the exact information of the Fontaine–Mazur simple
L
{\mathcal L}
-invariants of
ρ
L
\rho _L
. When
ρ
L
\rho _L
comes from an automorphic representation of
G
(
A
F
+
)
G({\mathbb A}_{F^+})
(for a unitary group
G
G
over a totally real field
F
+
F^+
which is compact at infinite places and
G
L
n
{\mathrm {GL}}_n
at
p
p
-adic places), we prove under mild hypothesis that
Π
(
ρ
L
)
\Pi (\rho _L)
is a subrepresentation of the associated Hecke-isotypic subspaces of the Banach spaces of
p
p
-adic automorphic forms on
G
(
A
F
+
)
G({\mathbb A}_{F^+})
. In other words, we prove the equality of Breuil’s simple
L
{\mathcal L}
-invariants and Fontaine–Mazur simple
L
L
-invariants. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/tran/7859 |