A new class of bell-shaped functions

We provide a large class of functions f that are bell-shaped: the nth derivative of f changes its sign exactly n times. This class is described by means of Stieltjes-type representation of the logarithm of the Fourier transform of f, and it contains all previously known examples of bell-shaped funct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2020-04, Vol.373 (4), p.2255-2280
1. Verfasser: Mateusz Kwaśnicki
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2280
container_issue 4
container_start_page 2255
container_title Transactions of the American Mathematical Society
container_volume 373
creator Mateusz Kwaśnicki
description We provide a large class of functions f that are bell-shaped: the nth derivative of f changes its sign exactly n times. This class is described by means of Stieltjes-type representation of the logarithm of the Fourier transform of f, and it contains all previously known examples of bell-shaped functions, as well as all extended generalised gamma convolutions, including all density functions of stable distributions. The proof involves representation of f as the convolution of a Pólya frequency function and a function which is absolutely monotone on (-\infty , 0) and completely monotone on (0, \infty ). In the final part we disprove three plausible generalisations of our result.
doi_str_mv 10.1090/tran/7825
format Article
fullrecord <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tran_7825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_tran_7825</sourcerecordid><originalsourceid>FETCH-LOGICAL-a293t-8ba2a66e19c1b49a17b4dd91c22ef1824561e25969785a662595d66029750b033</originalsourceid><addsrcrecordid>eNp9j01LAzEURYMoOLYu_AdZdOMi9iWTZJJlKX5BwY1dhySTYGU6U_JGxH_vDHXt6t4LhwuHkDsODxwsrMfi-3VjhLogFQdjmDYKLkkFAIJZK5trcoP4OU2QRldktaF9-qax84h0yDSkrmP44U-ppfmrj-Nh6HFJrrLvMN3-5YLsnx7fty9s9_b8ut3smBe2HpkJXnitE7eRB2k9b4JsW8ujEClzI6TSPAlltW2MmsCpqlZrELZREKCuF-T-_BvLgFhSdqdyOPry4zi4Wc_Nem7Wm9jVmfVH_Af7BcESTF4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A new class of bell-shaped functions</title><source>American Mathematical Society Publications</source><creator>Mateusz Kwaśnicki</creator><creatorcontrib>Mateusz Kwaśnicki</creatorcontrib><description>We provide a large class of functions f that are bell-shaped: the nth derivative of f changes its sign exactly n times. This class is described by means of Stieltjes-type representation of the logarithm of the Fourier transform of f, and it contains all previously known examples of bell-shaped functions, as well as all extended generalised gamma convolutions, including all density functions of stable distributions. The proof involves representation of f as the convolution of a Pólya frequency function and a function which is absolutely monotone on (-\infty , 0) and completely monotone on (0, \infty ). In the final part we disprove three plausible generalisations of our result.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/7825</identifier><language>eng</language><ispartof>Transactions of the American Mathematical Society, 2020-04, Vol.373 (4), p.2255-2280</ispartof><rights>Copyright 2020, American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a293t-8ba2a66e19c1b49a17b4dd91c22ef1824561e25969785a662595d66029750b033</citedby><cites>FETCH-LOGICAL-a293t-8ba2a66e19c1b49a17b4dd91c22ef1824561e25969785a662595d66029750b033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/tran/2020-373-04/S0002-9947-2020-07825-8/S0002-9947-2020-07825-8.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/tran/2020-373-04/S0002-9947-2020-07825-8/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,780,784,23327,27923,27924,77707,77717</link.rule.ids></links><search><creatorcontrib>Mateusz Kwaśnicki</creatorcontrib><title>A new class of bell-shaped functions</title><title>Transactions of the American Mathematical Society</title><description>We provide a large class of functions f that are bell-shaped: the nth derivative of f changes its sign exactly n times. This class is described by means of Stieltjes-type representation of the logarithm of the Fourier transform of f, and it contains all previously known examples of bell-shaped functions, as well as all extended generalised gamma convolutions, including all density functions of stable distributions. The proof involves representation of f as the convolution of a Pólya frequency function and a function which is absolutely monotone on (-\infty , 0) and completely monotone on (0, \infty ). In the final part we disprove three plausible generalisations of our result.</description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9j01LAzEURYMoOLYu_AdZdOMi9iWTZJJlKX5BwY1dhySTYGU6U_JGxH_vDHXt6t4LhwuHkDsODxwsrMfi-3VjhLogFQdjmDYKLkkFAIJZK5trcoP4OU2QRldktaF9-qax84h0yDSkrmP44U-ppfmrj-Nh6HFJrrLvMN3-5YLsnx7fty9s9_b8ut3smBe2HpkJXnitE7eRB2k9b4JsW8ujEClzI6TSPAlltW2MmsCpqlZrELZREKCuF-T-_BvLgFhSdqdyOPry4zi4Wc_Nem7Wm9jVmfVH_Af7BcESTF4</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Mateusz Kwaśnicki</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200401</creationdate><title>A new class of bell-shaped functions</title><author>Mateusz Kwaśnicki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a293t-8ba2a66e19c1b49a17b4dd91c22ef1824561e25969785a662595d66029750b033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mateusz Kwaśnicki</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mateusz Kwaśnicki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new class of bell-shaped functions</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>373</volume><issue>4</issue><spage>2255</spage><epage>2280</epage><pages>2255-2280</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>We provide a large class of functions f that are bell-shaped: the nth derivative of f changes its sign exactly n times. This class is described by means of Stieltjes-type representation of the logarithm of the Fourier transform of f, and it contains all previously known examples of bell-shaped functions, as well as all extended generalised gamma convolutions, including all density functions of stable distributions. The proof involves representation of f as the convolution of a Pólya frequency function and a function which is absolutely monotone on (-\infty , 0) and completely monotone on (0, \infty ). In the final part we disprove three plausible generalisations of our result.</abstract><doi>10.1090/tran/7825</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9947
ispartof Transactions of the American Mathematical Society, 2020-04, Vol.373 (4), p.2255-2280
issn 0002-9947
1088-6850
language eng
recordid cdi_crossref_primary_10_1090_tran_7825
source American Mathematical Society Publications
title A new class of bell-shaped functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A23%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20class%20of%20bell-shaped%20functions&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Mateusz%20Kwa%C5%9Bnicki&rft.date=2020-04-01&rft.volume=373&rft.issue=4&rft.spage=2255&rft.epage=2280&rft.pages=2255-2280&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/7825&rft_dat=%3Cams_cross%3E10_1090_tran_7825%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true