An explicit Gross--Zagier formula related to the Sylvester conjecture
Let p\equiv 4,7\mod 9 be a rational prime number such that 3\mod p is not a cube. In this paper, we prove the 3-part of \vert{\rm III}(E_p)\vert\cdot \vert{\rm III}(E_{3p^2})\vert is as predicted by the Birch and Swinnerton-Dyer conjecture, where E_p: x^3+y^3=p and E_{3p^2}: x^3+y^3=3p^2 are the ell...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2019-11, Vol.372 (10), p.6905-6925 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let p\equiv 4,7\mod 9 be a rational prime number such that 3\mod p is not a cube. In this paper, we prove the 3-part of \vert{\rm III}(E_p)\vert\cdot \vert{\rm III}(E_{3p^2})\vert is as predicted by the Birch and Swinnerton-Dyer conjecture, where E_p: x^3+y^3=p and E_{3p^2}: x^3+y^3=3p^2 are the elliptic curves related to the Sylvester conjecture and cube sum problems. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/tran/7760 |