An explicit Gross--Zagier formula related to the Sylvester conjecture

Let p\equiv 4,7\mod 9 be a rational prime number such that 3\mod p is not a cube. In this paper, we prove the 3-part of \vert{\rm III}(E_p)\vert\cdot \vert{\rm III}(E_{3p^2})\vert is as predicted by the Birch and Swinnerton-Dyer conjecture, where E_p: x^3+y^3=p and E_{3p^2}: x^3+y^3=3p^2 are the ell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2019-11, Vol.372 (10), p.6905-6925
Hauptverfasser: Hu, Yueke, Shu, Jie, Yin, Hongbo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let p\equiv 4,7\mod 9 be a rational prime number such that 3\mod p is not a cube. In this paper, we prove the 3-part of \vert{\rm III}(E_p)\vert\cdot \vert{\rm III}(E_{3p^2})\vert is as predicted by the Birch and Swinnerton-Dyer conjecture, where E_p: x^3+y^3=p and E_{3p^2}: x^3+y^3=3p^2 are the elliptic curves related to the Sylvester conjecture and cube sum problems.
ISSN:0002-9947
1088-6850
DOI:10.1090/tran/7760