Mixed multiplicities of filtrations

In this paper we define and explore properties of mixed multiplicities of (not necessarily Noetherian) filtrations of m_R-primary ideals in a Noetherian local ring R, generalizing the classical theory for m_R-primary ideals. We construct a real polynomial whose coefficients give the mixed multiplici...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2019-11, Vol.372 (9), p.6183-6211
Hauptverfasser: CUTKOSKY, STEVEN DALE, SARKAR, PARANGAMA, SRINIVASAN, HEMA
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we define and explore properties of mixed multiplicities of (not necessarily Noetherian) filtrations of m_R-primary ideals in a Noetherian local ring R, generalizing the classical theory for m_R-primary ideals. We construct a real polynomial whose coefficients give the mixed multiplicities. This polynomial exists if and only if the dimension of the nilradical of the completion of R is less than the dimension of R, which holds, for instance, if R is excellent and reduced. We show that many of the classical theorems for mixed multiplicities of m_R-primary ideals hold for filtrations, including the famous Minkowski inequalities of Teissier, and of Rees and Sharp.
ISSN:0002-9947
1088-6850
DOI:10.1090/tran/7745