A combinatorial model for computing volumes of flow polytopes

We introduce new families of combinatorial objects whose enumeration computes volumes of flow polytopes. These objects provide an interpretation, based on parking functions, of Baldoni and Vergne’s generalization of a volume formula originally due to Lidskii. We recover known flow polytope volume fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2019-09, Vol.372 (5), p.3369-3404
Hauptverfasser: Benedetti, Carolina, González D’León, Rafael S., Hanusa, Christopher R. H., Harris, Pamela E., Khare, Apoorva, Morales, Alejandro H., Yip, Martha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce new families of combinatorial objects whose enumeration computes volumes of flow polytopes. These objects provide an interpretation, based on parking functions, of Baldoni and Vergne’s generalization of a volume formula originally due to Lidskii. We recover known flow polytope volume formulas and prove new volume formulas for flow polytopes. A highlight of our model is an elegant formula for the flow polytope of a graph we call the caracol graph. As by-products of our work, we uncover a new triangle of numbers that interpolates between Catalan numbers and the number of parking functions, we prove the log-concavity of rows of this triangle along with other sequences derived from volume computations, and we introduce a new Ehrhart-like polynomial for flow polytope volume and conjecture product formulas for the polytopes we consider.
ISSN:0002-9947
1088-6850
DOI:10.1090/tran/7743