Matrix wreath products of algebras and embedding theorems
We introduce a new construction of matrix wreath products of algebras that is similar to wreath products of groups. We then use it to prove embedding theorems for Jacobson radical, nil, and primitive algebras. In §6, we construct finitely generated nil algebras of arbitrary Gelfand-Kirillov dimensio...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2019-08, Vol.372 (4), p.2389-2406 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a new construction of matrix wreath products of algebras that is similar to wreath products of groups. We then use it to prove embedding theorems for Jacobson radical, nil, and primitive algebras. In §6, we construct finitely generated nil algebras of arbitrary Gelfand-Kirillov dimension \geq 8 over a countable field which answers a question from [ New trends in noncommutative algebra , Amer. Math. Soc., Providence, RI, 2012, pp. 41-52]. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/tran/7642 |