Matrix wreath products of algebras and embedding theorems

We introduce a new construction of matrix wreath products of algebras that is similar to wreath products of groups. We then use it to prove embedding theorems for Jacobson radical, nil, and primitive algebras. In §6, we construct finitely generated nil algebras of arbitrary Gelfand-Kirillov dimensio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2019-08, Vol.372 (4), p.2389-2406
Hauptverfasser: Alahmadi, Adel, Alsulami, Hamed, Jain, S., Zelmanov, Efim
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a new construction of matrix wreath products of algebras that is similar to wreath products of groups. We then use it to prove embedding theorems for Jacobson radical, nil, and primitive algebras. In §6, we construct finitely generated nil algebras of arbitrary Gelfand-Kirillov dimension \geq 8 over a countable field which answers a question from [ New trends in noncommutative algebra , Amer. Math. Soc., Providence, RI, 2012, pp. 41-52].
ISSN:0002-9947
1088-6850
DOI:10.1090/tran/7642