Mixed L^{p}(L^{2}) norms of the lattice point discrepancy

We estimate some mixed L^{p}\left ( L^{2}\right ) norms of the discrepancy between the volume and the number of integer points in r\Omega -x, a dilation by a factor r and a translation by a vector x of a convex body \Omega in \mathbb{R}^{d} with smooth boundary with nonvanishing Gaussian curvature,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2019-11, Vol.371 (11), p.7669-7706
Hauptverfasser: Colzani, Leonardo, Gariboldi, Bianca, Gigante, Giacomo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We estimate some mixed L^{p}\left ( L^{2}\right ) norms of the discrepancy between the volume and the number of integer points in r\Omega -x, a dilation by a factor r and a translation by a vector x of a convex body \Omega in \mathbb{R}^{d} with smooth boundary with nonvanishing Gaussian curvature, \displaystyle \left \{ {\displaystyle \int _{\mathbb{T}^{d}}}\left ( \dfrac {1}... ...vert \Omega \right \vert \right \vert ^{2}dr\right ) ^{p/2}dx\right \} ^{1/p}. We obtain estimates for fixed values of H and R\to \infty , and also asymptotic estimates when H\to \infty .
ISSN:0002-9947
1088-6850
DOI:10.1090/tran/7624