Models for spaces of dendritic polynomials

Complex 1-variable polynomials with connected Julia sets and only repelling periodic points are called dendritic . By results of Kiwi, any dendritic polynomial is semiconjugate to a topological polynomial whose topological Julia set is a dendrite. We construct a continuous map of the space of all cu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2019-10, Vol.372 (7), p.4829-4849, Article 4829
Hauptverfasser: BLOKH, ALEXANDER, OVERSTEEGEN, LEX, PTACEK, ROSS, TIMORIN, VLADLEN
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Complex 1-variable polynomials with connected Julia sets and only repelling periodic points are called dendritic . By results of Kiwi, any dendritic polynomial is semiconjugate to a topological polynomial whose topological Julia set is a dendrite. We construct a continuous map of the space of all cubic dendritic polynomials onto a laminational model that is a quotient space of a subset of the closed bidisk. This construction generalizes the ``pinched disk'' model of the Mandelbrot set due to Douady and Thurston. It can be viewed as a step towards constructing a model of the cubic connectedness locus.
ISSN:0002-9947
1088-6850
DOI:10.1090/tran/7482