Scalar curvature on compact complex manifolds
In this paper, we prove that, a compact complex manifold X admits a smooth Hermitian metric with positive (resp., negative) scalar curvature if and only if K_X (resp., K_X^{-1}) is not pseudo-effective. On the contrary, we also show that on an arbitrary compact complex manifold X with complex dimens...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2019-03, Vol.371 (3), p.2073-2087 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we prove that, a compact complex manifold X admits a smooth Hermitian metric with positive (resp., negative) scalar curvature if and only if K_X (resp., K_X^{-1}) is not pseudo-effective. On the contrary, we also show that on an arbitrary compact complex manifold X with complex dimension \geq 2, there exist smooth Hermitian metrics with positive total scalar curvature, and one of the key ingredients in the proof relies on a recent solution to the Gauduchon conjecture by G. Székelyhidi, V. Tosatti, and B. Weinkove. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/tran/7409 |